Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Белгородский Валерий Сарминистерство науки и высшего образования Российской Федерации должность: Ректор Федеральное государственное бюджетное образовательное учреждение Дата подписания: 10.11.2023 17:47:06

высшего образования Уникальный программный ключ:

8df276ee93e17c18e7bee9e7cad2d0ed 2008сийский государственный университет им. А.Н. Косыгина (Технологии. Дизайн. Искусство)»

> Институт Аспирантура

Кафедра Органической химии

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Физико-химические методы исследования органических соединений

Уровень образования аспирантура

Научная специальность 1.4.3 Органическая химия

Направленность Органическая химия

Срок освоения образовательной

4 года программы по очной форме обучения

Форма обучения очная

Рабочая программа учебной дисциплины «Химия гетероциклических соединений» профессиональной образовательной программы высшего образования, рассмотрена и одобрена на заседании кафедры, протокол №7 от 20.02.2023 г.

Разработчик рабочей программы «Физико-химические методы исследования органических соединений»

Е.Б. Караваева канд. хим. наук, доцент

Заведующий кафедрой: канд. хим. наук, доцент Д.Н. Кузнецов

1. Цели освоения учебной дисциплины

- В результате освоения учебной дисциплины <u>Физико-химические методы</u> исследования органических соединений обучающийся должен:
- давать описание теоретических основ и экспериментальных аспектов современных физико-химических методов анализа и их роли в современной органической химии;
- оценивать возможности применения различных физико-химических методов анализа для исследования заданной структуры;
- интерпретировать полученные результаты физико-химических исследований с целью установления структуры органических соединений и направления протекания реакции; составлять отчет о проделанной работе с приложением данных свидетельствующих о чистоте и строении полученного продукта.

2. Место учебной дисциплины в структуре программы аспирантуры

Дисциплина <u>Физико-химические методы исследования органических соединений</u> включена в часть 2.1 Дисциплины (модули) Образовательного компонента, семестр 4.

Дисциплина базируется на знаниях, умениях и навыках, полученных при освоении дисциплин предыдущего уровня образования: органическая химия, физическая химия, физико-химические методы анализа.

3. Компетенции, формируемые в результате освоения учебной дисциплины

Таблина 1

		таолица т
Результаты обучения	Критерии результатов обучения	Технологии формирования
способность к критическому анализу и оценке современных научных достижений, генерированию новых идей при решении исследовательских и практических задач, в том числе в междисциплинарных областях	Знать: современные научные достижения и тенденции развития физико-химических методов исследования органических соединений; методологию комплексных научных исследований в своей предметной области, включая исследования междисциплинарного характера. Уметь: проектировать комплексные исследования, в том числе междисциплинарные, на основе целостного системного научного мировоззрения. Владеть: осуществлять комплексные исследования, в том числе междисциплинарные, на основе целостного системного научного мировоззрения.	лекции (Л), практические занятия (ПЗ) самостоятельная работа (СР)
способность самостоятельно осуществлять научно- исследовательскую деятельность в соответствующей профессиональной области с использованием современных методов исследования и информационно- коммуникационных технологий	Знать: современные экспериментальные и теоретические методы исследования в области органической химии; способы, методы и технологии научных исследований. Уметь: сформулировать задачи научного исследования в области направленного синтеза соединений с полезными свойствами или новыми структурами и выбрать необходимые методы их решения. Владеть: способностью самостоятельно осуществлять научно-исследовательскую деятельность в предметной области; информационно-коммуникационными технологиями при решении поставленных задач.	практические занятия (ПЗ) самостоятельная работа (СР)

	Знать: предметную область и методы исследования в области	
готовность организовать работу исследовательского коллектива в области химии и смежных наук	собственных научных исследований. Уметь: организовать работу малого исследовательского коллектива в предметной области; предупреждать и конструктивно разрешать межличностные конфликты в профессиональной деятельности; Владеть: способностью организовать работу исследовательского коллектива в области химии и смежных наук.	самостоятельная работа (СР)
готовность к преподавательской деятельности по основным образовательным программам высшего образования	Знать: современные образовательные технологии и технологии обучения органической химии; сущность, методологическую основу, структуру и основные принципы построения технологии, требования, предъявляемые к технологиям обучения; Уметь: анализировать методические модели, методики, технологии и приемы обучения, тенденции и направления развития образования в мире и анализировать результаты их использования в образовательных заведениях различных типов; разрабатывать учебно-методическое обеспечение для дисциплины органическая химии; проектировать учебные занятия по органической химии. Владеть: навыками формирования в педагогических коллективах позитивного психологического климата и этическими нормами в профессиональной деятельности; культурой мышления, способностью к восприятию, анализу, обобщению информации в области традиционных и нетрадиционных педагогических технологий.	самостоятельная работа (СР)
способность самостоятельно планировать многоступенчатый синтез сложных по структуре органических соединений с использованием эффективных прекурсоров и билдингблоков;	Знать: раскрыть роль физико-химических методов исследования в работе химика органика; рассмотреть основные экспериментальные закономерности физико-химических методов исследования и установления структуры органических соединений; обеспечить овладение методологией применения физико-химических методов исследований органических соединений. Уметь: способность к критическому анализу и оценке современных научных достижений в области физико-химических методов анализа органических соединений; сформулировать научную проблему в изучаемой области и предложить подходы к ее решению. Владеть: способностью применения физико-химических методов анализа в области установления структуры органических соединений и приложения полученных сведений к решению теоретических задач в органической химии.	лекции (Л), практические занятия (ПЗ) самостоятельная работа (СР)
умение грамотно выбирать и практически использовать современные приемы тонкого органического синтеза, химической технологии, экспериментального оборудования для достижения поставленной цели;	Знать: современные методы исследования в предметной области: синтетические методы в органической химии; Уметь: выбрать необходимые методы исследования и обосновать их применимость для решения поставленной задачи в области органической химии Владеть: общими подходами к решению задач, воспроизводящие ситуации, встречающиеся в практике многостадийного синтеза конкретных органических соединений	лекции (Л), практические занятия (ПЗ) самостоятельная работа (СР)
умение комплексно использовать данные физико- химических исследований органических соединений и квантово-химических расчетов для выявления закономерностей типа «структура-свойства» и последующего моделирования структур с практически важными свойствами.	Знать: основы применения физико-химических методов исследования для определения структуры органических соединений; теоретические основы масс-спектрометрии и УФ-, ИК и ЯМР-спектроскопии; распознавание характеристичности полос и правила их отбора. Уметь: применять на практике современные физико-химические методы исследования; оценить применимость различных методов спектрального анализа для решения поставленной задачи. Владеть: общими теоретическими и практическими навыками расшифровки масс-, УФ-, ИК и ЯМР-спектров;	лекции (Л), практические занятия (ПЗ) самостоятельная работа (СР)

интерпретировать спектральные данные для установления	
строения органического соединения; подготовить	
представление результатов спектроскопических исследований	
для публикации материала в научных журналах.	

4. Объем и содержание дисциплины

4.1. Объем дисциплины

Таблица 2

Показатель объема дисциплины	Трудоемкость
Объем дисциплины в зачетных единицах	2
Объем дисциплины в часах	72
Лекции (ч)	22
Практические занятия (семинары) (ч)	22
Самостоятельная работа (ч)	28
Форма контроля (зач./экз.)	Экзамен

4.2 Содержание разделов учебной дисциплины

Таблица 3

					т аолица
	Лекции	Наименование практических			
Наименование раздела учебной дисциплины	№ и тема лекции	Трудоемкость, час	(семинарских) занятий № и тема практического занятия	Трудоемкость, час	Оценочные средства
1	2	3	4	5	6
	Лекция 1. Физические основы метода: принцип работы масс- спектрометра, его разрешающая сила, образование масс-спектра, основное уравнение масс-спектрометрии, типы регистрируемых ионов (молекулярные, осколочные, метастабильные, многозарядные).	1	Способы ионизации. Типы массанализаторов. Технические характеристики масс-спектрометров.	1	
Масс- спектрометрия	Лекция 2. Определение молекулярной брутто-формулы по масс-спектру: метод точного измерения масс молекулярных ионов, метод измерения интенсивностей пиков ионов, изотопных молекулярному иону.	1	Качественный анализ. Определение молекулярной массы. Определения элементного состава. Определение структуры органического соединения по его масс-спектру.	2	
	Лекция 3. Качественные теории масс-спектрометрии органических соединений: теория локализации заряда, теория устойчивости продуктов фрагментации. Масс-спектрометрические правила: азотное, "четноэлектронное", затрудненный разрыв связей, прилежащих к ненасыщенным системам. Основные типы реакций распада органических соединений под электронным ударом: простой разрыв связей (α-разрыв, бензильный и аллильный разрывы), ретро-реакция Дильса-Альдера, перегруппировка Мак-Лафферти, скелетные перегруппировки, ониевые реакции. Термические реакции в масс-спектрометре.	2	Количественный анализ. Гибридные методы.	2	Индивидуаль ное домашнее задание
	Лекция 4. Установление строения органических соединений: метод функциональных групп, метод характеристических значений m/z. Основные направления фрагментации органических соединений под электронным ударом (углеводородов и их галогенпроизводных, спиртов, фенолов, простых эфиров, альдегидов, кетонов, аминов, карбоновых кислот и их производных). Понятие о методе химической ионизации и хроматомасс-спектрометрии. Примеры структурного анализа органических соединений по масс-спектру низкого разрешения.	2	Тандемная масс-спектрометрия. Другие методы. Применение масс- спектрометрии.	2	

1	2	3	4	5	6
Электронная УФ спектроскоп ия	Лекция 5. Физические основы метода: электронные состояния молекул, классификация электронных переходов в молекулах, правила отбора. Взаимосвязь электронных спектров и структуры органических молекул: хромофоры и ауксохромы, сопряжение хромофоров, неспецифическое и специфическое влияние растворителей, батохромный и гипсохромный сдвиги, гипохромный и гиперхромный эффекты, классификация полос поглощения в электронных спектрах.	1	Применение электронных спектров поглощения в качественном и количественном анализах.	1	Индивидуа льное домашнее
	Лекция 6. Избирательное поглощение важнейших ауксохромных и хромофорных групп: насыщенные гетероатомные ауксохромы, карбонильный хромофор, диеновый хромофор, еноновый хромофор, бензольный хромофор, правила Вудворда-Физера. Условия измерения УФ спектров. Примеры структурного анализа ненасыщенных органических соединений по спектру поглощения в ближней области УФ спектра	1	Структурный анализ ненасыщенных органических соединений по спектрам поглощения в ближней области УФ спектра. Правила описания.	1	задание
	Лекция 7. Физические основы метода: магнитные свойства ядер, основное уравнение ядерного магнитного резонанса, взаимодействия магнитных моментов ядер (тонкая и сверхтонкая структура сигналов ядер). Выбор резонансного ядра при изучении строения органических соединений. Принцип работы ЯМР спектрометра.	1	Основы спектроскопии ЯМР. Выбор резонансного ядра при изучении строения органических соединений. Принцип работы ЯМР спектрометра. Метод двойного резонанса.	1	
	Лекция 8. Анализ спектров ядерного магнитного резонанса ядер со спино-вым квантовым числом 1=1/2: химическая и магнитная эквивалент-ность ядер, номенклатура ядерных систем, A2, AX, AB и A2B системы, индекс связывания, спектры первого и второго порядка, основные правила анализа спектров первого порядка, расшифровка простейших спектров второго порядка, приемы упрощения сложных спектров.	1	Химический сдвиг и спин-спиновое расщепление в спектрах ¹ Н ЯМР. Константа экранирования ядра. Относительный химический сдвиг, его определение и использование в химии.	1	
Спектроскоп	Лекция 9. Спектроскопия протонного магнитного резонанса: шкала химических сдвигов протонов, их характеристичность, закономерности в изменении значений химических сдвигов; константы спин- спинового взаимодействия J H-H. Двойной резонанс.	2	Правила описания спектральных характеристик ЯМР в научной литературе.	2	Индивидуа льное
ия ядерного магнитного резонанса	Лекция 10. Спектроскопия углеродного магнитного резонанса: шкала химических сдвигов ядер ¹³ С, их характеристичность, закономерности в изменении значений химических сдвигов, константы спин-спинового взаимодействия JC-H, полное и частичное подавление спин-спинового взаимодействия ядер ¹³ С и протонов.	2	Примеры идентификации соединений различных классов с использованием спектроскопии ЯМР.	1	домашнее задание
	Лекция 11. Ядерный эффект Оверхаузера. Зависимость знака и величины NOE от структуры. Применение спектроскопия ядерного эффекта Оверхаузера для выявления пространственных контактов протонов. Разностные эксперименты. Установление положения заместителей и отнесение протонного спектра с помощью разностной спектроскопии NOE.	1	Ядерный эффект Оверхаузера Установление положения заместителей и отнесение протонного спектра с помощью разностной спектроскопии NOE.	1	
	Лекция 12. Двумерная спектроскопия ЯМР. Примеры гомо- и гетероядерных спектров COSY. Отнесение протонного спектра по данным COSY. Одномерные спектры двойного резонанса. Пример структурного исследования с помощью серии экспериментов двойного резонанса.	2	Двумерная корреляционная спектроскопия. Одномерные спектры двойного резонанса. Пример структурного исследования с помощью серии экспериментов двойного резонанса	2	

1	2	3	4	5	6	
Колебательна я ИК	Лекция 13. Физические основы метода: частота и интенсивность поглощения в колебательных спектрах двухатомных молекул, основные колебания многоатомных молекул, правила отбора. Взаимосвязь инфракрасных спектров и структуры органических молекул: валентные и деформационные колебания, характеристичность колебаний и ее физические причины, факторы, вызывающие сдвиг полос поглощения и изменение их интенсивности.	1	Примеры структурного анализа органических соединений по ИК спектру (область 4000 - 650 см ⁻¹). Правила описания спектральных характеристик ИК спектроскопии в научной литературе.	1	Индивидуаль	
я тис спектроскопи я	Лекция 14. Характеристическое поглощение важнейших структурных фрагментов и функциональных групп органических соединений: C-C, C=C, C=C, C_{apom} - C_{apom} , C_{sp3} -H, C_{sp2} -H, C_{sp} -H, C-O, C-N, O-H, N-H, S-H, C=O, CHO, COOH, COOR, COHal, NO2, C=N. Структурные области ИК спектра. Принципы отнесения полос поглощения. Последовательность проведения структурного анализа. Количественная ИК спектроскопия. Условия измерения ИК спектров. Примеры структурного анализа органических соединений по ИК спектру (область $4000 - 400 \text{ cm}^{-1}$).	1	Определение числа функциональных групп в органическом соединении (расчет интегральной интенсивности полосы поглощения)	1	ное домашнее задание	
Хроматограф	Лекция 15. Основные характеристики хроматографического процесса и параметры хроматограмм. Теории хроматографических процессов. Качественный и количественный анализ в хроматографии.	1	Теоретические основы аналитической хроматографии.	1	П	
ические методы анализа	Лекция 16. Теоретические основы газовой хроматографии. Аналитические возможности газо-адсорбционной (ГАХ) и газо-жидкостной хроматографии (ГЖХ). Аппаратура для газовой хроматографии.	1	Качественный и количественный газохроматографический анализ.	1	Индивидуаль ное домашнее задание	
органических соединений	Лекция 17. Теоретические основы высокоэффективной жидкостной хроматографии (ВЭЖХ). Особенности идентификации компонентов сложной смеси в ВЭЖХ. Аппаратура для жидкостной хроматографии	1	Высокоэффективная жидкостная хроматография (ВЭЖХ).	1		
ВСЕГО часов в семестре	•	22		22	Экзамен	

5. Самостоятельная работа обучающихся

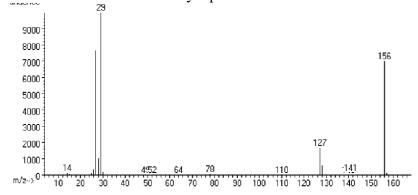
Таблица 4

№ п/п	Наименование раздела учебной дисциплины	Содержание самостоятельной работы	Трудое мкость в часах
1	Масс-спектрометрия	Работа с литературой. Индивидуальное домашнее задание.	4
2	Электронная УФ спектроскопия	Работа с литературой. Индивидуальное домашнее задание.	4
3	Спектроскопия ядерного магнитного резонанса	Работа с литературой. Индивидуальное домашнее задание.	4
4	Колебательная ИК спектроскопия	Работа с литературой. Индивидуальное домашнее задание.	4
5	Хроматографические методы анализа органических соединений	Работа с литературой. Индивидуальное домашнее задание.	4
6	Все разделы	Подготовка к экзамену	8
BCE	ГО часов в семестре:		28

6. Образовательные технологии

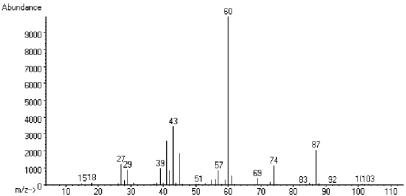
При освоении дисциплины <u>Органическая химия</u> используются следующие образовательные технологии:

- лекции
- практические занятия
- самостоятельная работа
- защита индивидуального домашнего задания

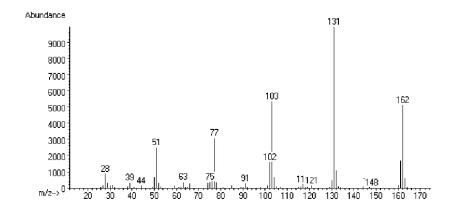

7. Фонд оценочных средств для проведения текущей и промежуточной аттестации по дисциплине

- 7.1 Примерная тематика курсовых проектов (работ) не предусмотрены.
- 7.2 Примеры используемых оценочных средств для текущего контроля

Индивидуальное домашнее задание по теме «Масс-спектрометрия»

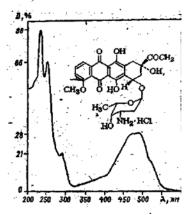

Вариант №1

1. Определите строение соединения, масс-спектр которого представлен на рис. Молекулярный вес соединения 156, интенсивность линии иона $(M+1)^+$ составляет 2,4% от интенсивности линии молекулярного иона M^+ .

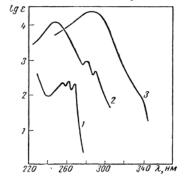

Вариант №2

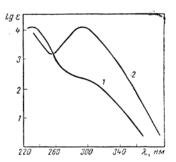
1. Определите строение соединения, масс-спектр которого представлен на рис. Молекулярный вес соединения равен 102, по данным элементного анализа вещество содержит только углерод, водород и кислород; интенсивность линии иона $(M+1)^+$ составляет 5,9%, а интенсивность линии $(M+2)^+$ - 0,6% от интенсивности линии молекулярного иона M+.

Вариант №3

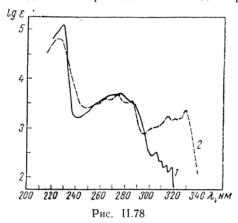

1. Соединение $C_{10}H_{10}O_2$ имеет масс-спектр, представленный на рис. Что можно сказать о строении этого соединения?

Индивидуальное домашнее задание по теме «Электронная У Φ спектроскопия»

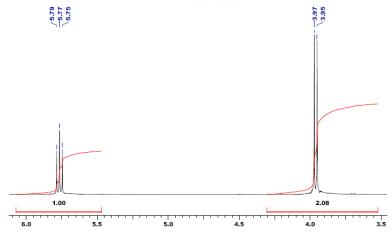

Вариант №1


Вычислите значения мольных коэффициентов погашения для максимумов электронного спектра (в видимой) области для окрашенного в красный цвет противоопухолевого антибиотика рубомицина. Спектр получен для раствора 4.49мг вещества в 250 мл этанола, толщина кюветы 1 см. Значения D%, обозначенные на спектре: 21, 28, 66, 88.

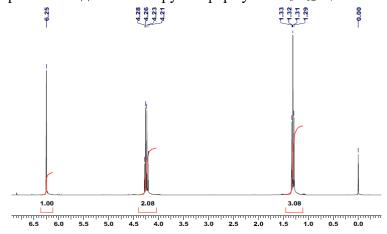
Вариант №2


На рис. приведены спектры пропенилбензола $C_6H_5CH=CHCH_3$, аллилбензола $C_6H_5CH=CH_2$ и 1-фенилпентадиена-1,3 $C_6H_5CH=CH-CH=CH-CH_3$. Какому соединению принадлежит каждая кривая поглощения?

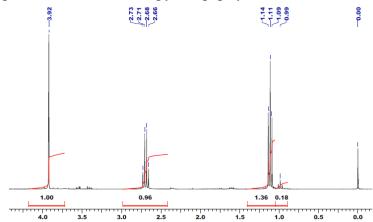
Вариант №3


На рис. 5-73 приведены спектры β-нафтола и 2-нафтилкарбинола. Какому соединению принадлежит каждая кривая?

Индивидуальное домашнее задание по теме «Спектроскопия ядерного магнитного резонанса»

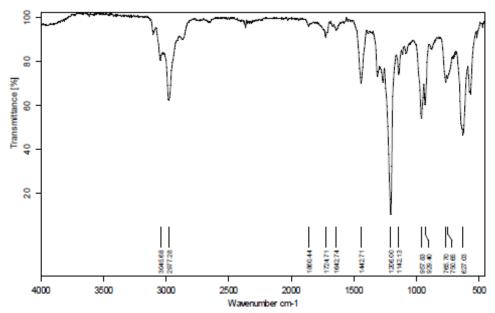

Вариант №1

1. Определить строение соединения с брутто-формулой $C_2H_3Cl_3$.

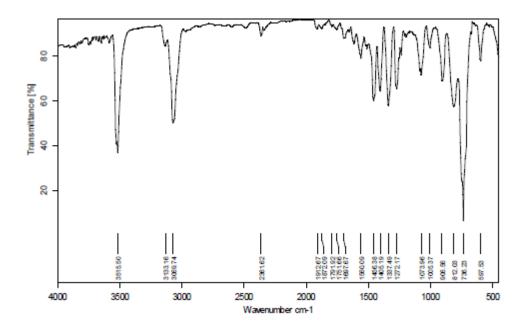

Вариант №2

1. Определить строение соединения с брутто-формулой $C_8H_{12}O_4$

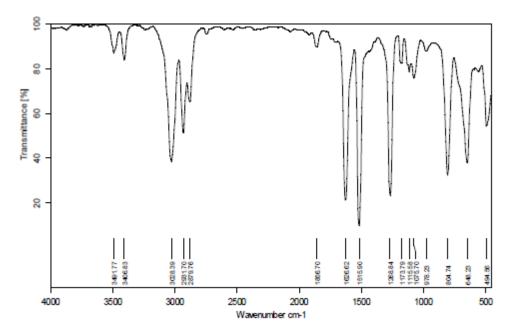
Вариант №3


1. Определить строение соединения с брутто-формулой C₄H₇OBr

Индивидуальное домашнее задание по теме «Колебательная ИК спектроскопия»


Вариант №1

1. Определить строение соединения с брутто-формулой $C_4H_6Br_2$


Вариант №2

1. Определить строение соединения с брутто-формулой C_8H_7N .

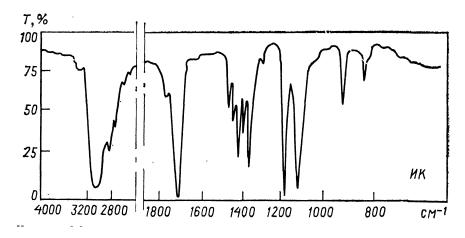
Вариант №3

1. Определить строение соединения с брутто-формулой С₇H₉N.

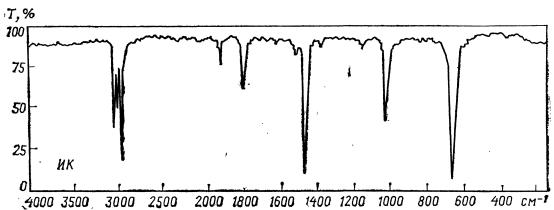
Индивидуальное домашнее задание по теме «Хроматографические методы анализа органических соединений»

- 1. Какие особенности хроматографии позволяют достичь лучшего разделения веществ с близкими свойствами по сравнению с другими методами разделения.
- 2. Перечислите способы получения хроматограмм. Что используется в качестве элюентов в каждом из способов?
- 3. Как можно осуществлять идентификацию определяемых соединений в смеси после их хроматографического разделения?
- 4. Что такое индексы удерживания? Какие системы индексов удерживания используют в хроматографии (преимущественно в газовой)?

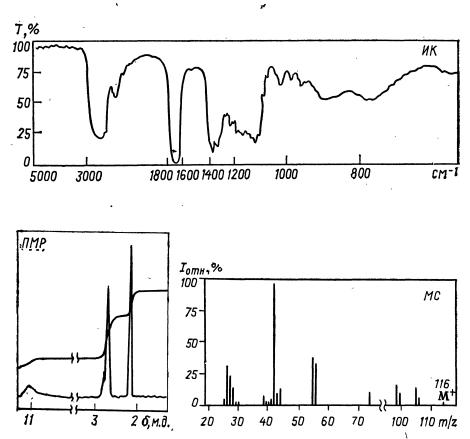
- 5. Перечислите особенности и преимущества высокоэффективной жидкостной хроматографии (ВЭЖХ).
- 6. Какие сорбенты используют в ВЭЖХ? Каким требованиям они должны отвечать?

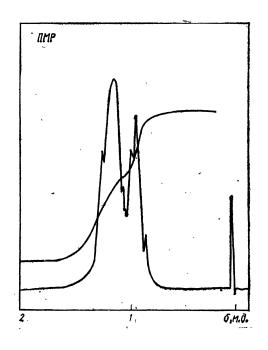

7.3 Примеры используемых оценочных средств для промежуточной аттестации

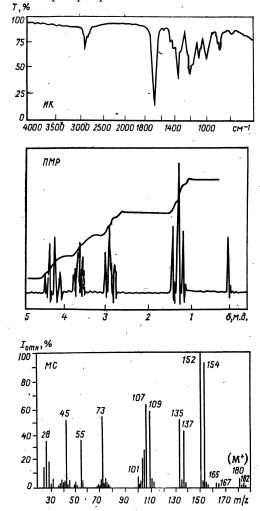
Вопросы к экзамену по дисциплине:


- 1. Параметры удерживания в хроматографии: первичные, приведенные, исправленные, чистые, абсолютные и относительные. Индекс удерживания Ковача. Использование их в качественном хроматографическом анализе.
- 2. Хроматографические параметры (коэффициент распределения, коэффициент емкости, фазовое соотношение, коэффициент удерживания), их соотношение и значение для выбора условий. Основное уравнение хроматографирования.
- 3. Газо-адсорбционная (газо-твердофазная) хроматография и ее аналитические возможности. Требования к газам-носителям и адсорбентам. Природные, синтетические и поверхностно-модифицированные адсорбенты. Влияние температуры на удерживание и разделение. Программирование температуры.
- 4. Колебательное взаимодействие и обертоны. Факторы, влияющие на частоту и интенсивность поглощения. Общая методика анализа ИК и спектров.
- 5. Спектроскопия ¹H ЯМР: шкала химических сдвигов протонов, их характеристичность, закономерности в изменении значений химических сдвигов; константы спин-спинового взаимодействия J H-H.
- 6. Специальные методики ЯМР. Ядерный эффект Оверхаузера.
- 7. Методы ионизации в масс-спектрометрии. Методы разделения и регистрации ионов.
- 8. Основные типы реакций распада органических соединений под электронным ударом. Масс-спектрометрические правила: азотное, "четно-электронное", затрудненный разрыв связей.

Примеры расчетных задач:


1. Жидкость $C_2H_4O_2$. УФ-спектр: $\lambda_{\text{макс}}$ (в воде) 204 нм (lge 1,6). Спектр ПМР: два синглета при δ 2,05 и 11,4 м. д.; соотношение интенсивностей сигналов 3:1. Масс-спектр (m/z): 60(72), 45(100), 44(6), 43(92), 42(8), 29(4), 28(3), 19(3), 18(20), 17(4), 15(8). ИК-спектр:


2. Жидкость; количественный состав: 92,3% С; 7,7% Н. УФ-спектр: λ макс (в гексане) 255 нм (lge 2,8). Спектр ПМР: синглет при δ 7,23 м. д. Масс-спектр (m/z): 79(6), 78(100), 77(14), 76(6), 75(2), 74(2), 73(2), 63(4), 52(20), 51(20), 50(18), 49(3), 39(14), 38(6), 37(1), 27(4), 26(4). ИК-спектр: см.


3. Соединение $C_5H_8O_3$. УФ-спектр: Хмакс (в этаноле) 262 нм (lg e 1,5). ИК-, ПМР- и масс-спектры:

4. Жидкость C_6H_{14} . УФ-спектр: прозрачна выше 200 нм, ИК-спектр (см⁻¹): 2958 с, 2935 с, 2870 с, 2860 с, 1465 ср., 1448 ср., 1380 ср., 725 ср. Масс-спектр (m/z): 86(28), 71(14), 57(100), 56(77), 43(88), 42(60), 41(76), 39(38), 29(65), 28(22). ПМР-спектр:

5. Жидкость $C_5H_9BrO_2$. УФ-спектр: прозрачна выше 200 нм. ИК-, ПМР- и масс-спектры: 7,%

Полный комплект оценочных средств приведен в приложении к рабочей программе.

8. Учебно-методическое и информационное обеспечение учебной дисциплины

8.1 Перечень основной и дополнительной учебной литературы

Таблица 5

№ п/ п	Автор(ы)	Наименование издания	Вид издания (учебник, учебное пособие,)	Издательс тво	Год издания	Кол-во экз.	Электро нный ресурс
	овная литерату						
1	Сильверстейн Р., Басслер Г., Морри Т.	Спектрометрическая идентификация органических соединений	Учебник	Мир	1977	2	-
2	Д.Браун, Ф.Флойд, М. Сейнзбери.	Спектроскопия органических веществ	Учебник	Мир	1992	2	-
3	Казицына Л.А., Куплетская Н.Б.	Применение УФ-, ИК- и ЯМР-спектроскопии в органической химии.	Учебник	Высшая школа	1971	2	-
4	Дероум Э.	Современные методы ЯМР для химических исследований	Учебник	Мир	1992	2	-
Доп	олнительная лі	итература					
1	Луков В.В., Щербаков И.Н.	Физические методы исследования в химии	Учебное пособие	Рн/Д: Южный федеральн ый университ ет,	2016	-	http://zna nium.co m/catalo g/product /991794
2	Пашкова Е.В.	Спектральные методы анализа	Учебное пособие	М.:СтГАУ - "Агрус",	2017	-	http://zna nium.co m/catalo g/product /976630
3	Литвин Ф.Ф.	Молекулярная спектроскопия: основы теории и практика	Учебное пособие	М.: НИЦ Инфра-М,	2013	-	http://zna nium.co m/catalo g/product /352873
4	Ионин Б. И.	ЯМР-спектроскопия в органической химии	Учебник	Химия	1983	2	-
5	Ю. Я. Кузяков, К.А. Семененко, Н. Б. Зоров	Методы спектрального анализа	Учебник	МГУ	1990	10	-
7	Беллами Л.	Новые данные по ИК- спектрам сложных молекул	Справочник	Мир	1971	1	-

^{8.2} Перечень ресурсов информационно-телекоммуникационной сети Интернет, электронных образовательных ресурсов локальных сетей РГУ им. А.Н. Косыгина, необходимых для освоения дисциплины

1. Библиотека РГУ им. А.Н. Косыгина http://biblio.mgudt.ru/jirbis2/.

- 2. Электронно-библиотечная система (ЭБС) «ИНФРА-М» «Znanium.com» http://znanium.com/.
 - 3. Реферативная база данных «Web of Science» http://webofknowledge.com/.
 - 4. Реферативная база данных «Scopus» http://www.scopus.com/.
- 6. Электронные ресурсы издательства «SPRINGERNATURE» http://www.springernature.com/gp/librarians.
 - 7. Научная электронная библиотека «eLIBRARY.RU» http://www.elibrary.ru/.
 - 8. Национальная электронная библиотека («НЭБ») http://нэб.pф/.
 - 9. Электронно-библиотечная система (ЭБС) «ЮРАЙТ» https://biblio-online.ru/

9. Материально-техническое обеспечение дисциплины

Наименование учебных аудиторий, лабораторий, мастерских, библиотек,	Оснащенность учебных аудиторий, лабораторий, мастерских, библиотек,
спортзалов, помещений для хранения и	спортивных залов, помещений для хранения и
профилактического обслуживания	профилактического обслуживания учебного
учебного оборудования и т.п.	оборудования и т.п.
	Садовническая, д. 33, стр. 1
Аудитория №757 — учебная аудитория для проведения занятий лекционного и семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации.	Комплект учебной мебели, технические средства обучения, служащие для представления учебной информации аудитории: проектор, экран для проектора, меловая доска.
Помещения для самостоятельной работы обучающихся	Оснащенность помещений для самостоятельной работы обучающихся
	Малая Калужская, д.1, стр.3
читальный зал библиотеки	компьютерная техника; подключение к сети «Интернет»
Аудитория №1154 - читальный зал библиотеки: помещение для самостоятельной работы, в том числе, научно-исследовательской, подготовки курсовых и выпускных квалификационных работ	- Шкафы и стеллажи для книг и выставок, комплект учебной мебели, 1 рабочее место сотрудника и 3 рабочих места для студентов, оснащенные персональными компьютерами с подключением к сети «Интернет» и обеспечением доступа к электронным библиотекам и в электронную информационно-образовательную среду организации.
Аудитория №1155 - читальный зал библиотеки: помещение для самостоятельной работы, в том числе, научно-исследовательской, подготовки курсовых и выпускных квалификационных работ.	- Каталоги, комплект учебной мебели, трибуна, 2 рабочих места для студентов, оснащенные персональными компьютерами с подключением к сети «Интернет» и обеспечением доступа к электронным библиотекам и в электронную информационно-образовательную среду организации.
Аудитория №1156 - читальный зал библиотеки: помещение для самостоятельной работы, в том числе, научно-исследовательской, подготовки курсовых и выпускных квалификационных работ.	— Стеллажи для книг, комплект учебной мебели, 1 рабочее место сотрудника и 8 рабочих места для студентов, оснащенные персональными компьютерами с подключением к сети «Интернет» и обеспечением доступа к электронным библиотекам и в электронную информационно-образовательную среду организации.

Материально-техническое обеспечение учебной дисциплины при обучении с использованием электронного обучения и дистанционных образовательных технологий.

Необходимое оборудование	Параметры	Технические требования
Персональный	Веб-браузер	Версия программного обеспечения не
компьютер/		ниже: Chrome 72, Opera 59, Firefox 66,
ноутбук/планшет,		Edge 79, Яндекс. Браузер 19.3
камера,	Операционная	Версия программного обеспечения не
микрофон,	система	ниже: Windows 7, macOS 10.12
динамики,		«Sierra», Linux
доступ в сеть Интернет	Веб-камера	640х480, 15 кадров/с
	Микрофон	любой
	Динамики (колонки	любые
	или наушники)	
	Сеть (интернет)	Постоянная скорость не менее 192
		кБит/с

Технологическое обеспечение реализации программы осуществляется с использованием элементов электронной информационно-образовательной среды университета.

Перечень лицензионного программного обеспечения:

Microsoft® Windows® XP Professional Russian Upgrade/Software Assurance Pack Academic OPEN No Level, артикул E85-00638; лицензия №18582213 от 30.12.2004 (бессрочная корпоративная академическая лицензия);

Microsoft® Office Professional Win 32 Russian License/Software Assurance Pack Academic OPEN No Level, артикул 269-05620; лицензия №18582213 от 30.12.2004 (бессрочная корпоративная академическая лицензия).

Microsoft Windows Professional 7 Russian Upgrade Academic Open No Level, артикул FQC-02306, лицензия № 46255382 от 11.12.2009 (копия лицензии;

бессрочная академическая лицензия; центр поддержки корпоративных лицензий Microsoft).

Microsoft Office Professional Plus 2010 Russian Academic Open No Level, лицензия 47122150 от 30.06.2010 (бессрочная академическая лицензия; центр поддержки корпоративных лицензий Microsoft).

Система автоматизации библиотек ИРБИС64, договора на оказание услуг по поставке программного обеспечения №1/28-10-13 от 22.11.2013, №1/21-03-14 от 31.03.2014 (копии договоров).

Google Chrome (свободно распространяемое).

Adobe Reader (свободно распространяемое).

Kaspersky Endpoint Security для бизнеса - Стандартный Russian Edition, 250-499 Node 1 year Educational Renewal License; договор №218/17 - КС от 21.11.2018.