Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Белгородский Валерий Сандинистерство науки и высшего образования Российской Федерации

должность: Ректор Федеральное гос ударственное бюджетное образовательное учреждение Дата подписания: 24.06.2024 17:20:28

Уникальный программный ключ:

8df276ee93e17c18e7bee9e7cad2d0ed Реведийский государственный университет им. А.Н. Косыгина

(Технологии. Дизайн. Искусство)»

Институт Химических технологий и промышленной экологии

Энергоресурсоэффективных технологий, промышленной экологии и

Кафедра безопасности

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Техническая термодинамика

Уровень образования бакалавриат

Направление подготовки 13.03.01 Теплоэнергетика и теплотехника

Направленность (профиль) Промышленная теплоэнергетика

Срок освоения

образовательной 4 года 6 месяцев

программы обучения

Форма(-ы) обучения Очно-заочная

Рабочая программа учебной дисциплины «Техническая термодинамика» основной профессиональной образовательной программы высшего образования, рассмотрена и одобрена на заседании кафедры, протокол № № 9 от 15.03.2024 г.

Разработчик(и) рабочей программы учебной дисциплины:

Доцент
 Преподаватель
 И.С. Антаненкова
 Е.Н.Гужавина

Заведующий кафедрой: О.И. Седляров

1. ОБЩИЕ СВЕДЕНИЯ

Учебная дисциплина «Техническая термодинамика» изучается в четвертом и пятом семестрах.

Курсовая работа – не предусмотрен(а).

1.1. Форма промежуточной аттестации:

четвертый семестр - экзамен; пятый семестр - экзамен.

1.2. Место учебной дисциплины в структуре ОПОП

Учебная дисциплина <u>Техническая термодинамика</u> относится к обязательной части программы.

Основой для освоения дисциплины являются результаты обучения по предшествующим дисциплинам и практикам:

- Математика;
- Физика;
- Теплофизика.

Результаты обучения по учебной дисциплине используются при изучении следующих дисциплин и прохождения практик:

- Тепломассообмен;
- Нетрадиционные и возобновляемые источники энергии;
- Котельные установки и парогенераторы;
- Источники и системы теплоснабжения предприятий;
- Энергосбережение в теплоэнергетике и теплотехнологии;
- Основы трансформации теплоты;
- Теплонасосные системы теплоснабжения.

Результаты освоения учебной дисциплины в дальнейшем будут использованы при прохождении производственной практики и (или) выполнении выпускной квалификационной работы.

2. ЦЕЛИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Целями изучения дисциплины «Техническая термодинамика» являются:

- изучение основных законов термодинамики и термодинамических методов анализа применительно к техническому оборудованию и системам производства, передачи и трансформации теплоты в теплосиловых, холодильных и теплонасосных установках;
- формирование навыков научно-теоретического подхода к решению задач профессиональной направленности и практического их использования в дальнейшей профессиональной деятельности;
- формирование у обучающихся компетенций, установленных образовательной программой в соответствии с ФГОС ВО по данной дисциплине.

Результатом обучения по учебной дисциплине является овладение обучающимися знаниями, умениями, навыками и опытом деятельности, характеризующими процесс формирования компетенции(й) и обеспечивающими достижение планируемых результатов освоения учебной дисциплины.

2.1. Формируемые компетенции, индикаторы достижения компетенций, соотнесённые с планируемыми результатами обучения по дисциплине:

Код и наименование	Код и наименование индикатора	Планируемые результаты обучения
компетенции	достижения компетенции	по дисциплине
ОПК-3	ИД-ОПК-3.2	- знает основные понятия и термины в
Способен применять	Применение теоретических	области технической термодинамики,
спосооси применять	основ физики при решении	их физический смысл;
физико-математический	прикладных задач	•
аппарат, методы анализа	_	- знает о термических и калорических
	промышленной	свойствах веществ, методах получения
и моделирования,	теплоэнергетики	информации о них;
теоретического и		- знает основные законы и соотношения
экспериментального		термодинамики, методы их применения
исследования при		для расчета и анализа
решении		термодинамических процессов;
профессиональных		– демонстрирует знание и понимание
задач		основ экспериментального
		исследования и математического
		моделирования термодинамических
ОПК-4	ИД-ОПК-4.2	процессов и циклов теплосиловых и
Способен	Использование знания	холодильных (теплонасосных)
демонстрировать	теплофизических свойств	установок;
применение основных	рабочих тел при расчетах	– применяет основные понятия и
способов получения,	теплотехнических установок и	термины в области технической
преобразования,	систем	термодинамики для описания
транспорта и	ИД-ОПК-4.3	физических процессов, происходящих в
использования теплоты	Применение основных	техническом оборудовании и системах
в теплотехнических	законов термодинамики и	производства, передачи и
установках и системах	термодинамических	трансформации теплоты в
	соотношений для расчетов	теплосиловых, холодильных и
	термодинамических	теплонасосных установках;
	процессов, циклов и их	– применяет основные законы
	показателей	термодинамики для расчета и анализа
		процессов в техническом оборудовании
		и системах производства, передачи и
		трансформации теплоты в
		теплосиловых, холодильных и
		теплонасосных установках;
		 применяет знания о термических и
		калорических свойствах веществ для
		расчета и анализа термодинамических
		процессов в техническом оборудовании,
		умеет пользоваться справочными
		данными для их поиска; — знает основные термодинамические
		процессы и циклы преобразования
		· · · · · · · · · · · · · · · · · · ·
		энергии, применяемые в теплосиловых,
		холодильных и теплонасосных
		установках, показатели их
		эффективности;
		– умеет вычислять показатели
		энергетической эффективности
		термодинамических процессов, прямых
		и обратных термодинамических циклов;
		– умеет определять рабочие параметры
		технического оборудования,

Код и наименование компетенции	Код и наименование индикатора достижения компетенции	Планируемые результаты обучения по дисциплине
	достижения компетенции	анализировать влияние их изменения на показатели эффективности теплотехнических установок и систем.

3. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ/МОДУЛЯ

Общая трудоёмкость учебной дисциплины по учебному плану составляет:

по заочной форме обучения –	8	3.e.	256	час.	
-----------------------------	---	------	-----	------	--

3.1. Структура учебной дисциплины для обучающихся по видам занятий

Структура и объем дисциплины									
	10Й		Контактная аудиторная работа, час				Самостоятельная работа обучающегося, час		
Объем дисциплины по семестрам	форма промежуточной аттестации	всего, час	лекции, час	практические занятия, час	лабораторные занятия, час	практическая подготовка, час	курсовая работа	самостоятельная работа обучающегося, час	промежуточная аттестация, час
4 семестр	экзамен	128	10	26	18			42	4
5 семестр	экзамен	128	8	16	16			56	4
Всего:		256	18	32	34			98	8

3.2. Структура учебной дисциплины для обучающихся по разделам и темам дисциплины: (заочная форма обучения)

Планируемые]	Виды учебі	ной работь	I		
(контролируемые)			Контактная работа				Виды и формы контрольных
результаты освоения: код(ы) формируемой(ых) компетенции(й) и индикаторов достижения компетенций	Наименование разделов, тем; виды самостоятельной работы обучающегося; форма(ы) промежуточной аттестации	Лекции, час	Практические занятия, час	Лабораторные работы, час	Практическая подготовка, час	Самостоятельная работа, час	мероприятий, обеспечивающие по совокупности текущий контроль успеваемости, включая контроль самостоятельной работы обучающегося; формы промежуточного контроля успеваемости
	Четвертый семестр						
	Раздел I. Введение	X	X	X	X	10	
	Тема 1.1						
	Основные понятия термодинамики. Функции состояния и	2					
	функции процесса						
	Практическое занятие № 1.1		6				
	Параметры состояния термодинамической системы		U				
	Раздел ІІ. Первый и второй законы термодинамики.	X	X	X	X	32	
	Идеальный газ	Λ	Λ	Λ	Λ	32	
	Тема 2.1						
	Первый закон термодинамики как закон сохранения и	2					
ОПК-3:	превращения энергии.						
ИД-ОПК-3.2;	Тема 2.2	3					
ОПК-4:	Термодинамические свойства и процессы идеального газа.	3					
ИД-ОПК-4.2;	Тема 2.3						
ИД-ОПК-4.3	Обратимые и необратимые процессы. Второй закон	3					Формы текущего контроля
	термодинамики. Термодинамический цикл. Цикл Карно.						по разделу II:
	Интеграл Клаузиуса. Энтропия. Т,s-диаграмма						- расчетное задание;
	Практическое занятие № 2.1						- защита лабораторной работы №2.1.
	Первый закон термодинамики для неподвижной системы и		6				
	потока вещества.						-
	Практическое занятие № 2.2		7				
	Идеальный газ. Термодинамические свойства идеальных		7				
	газов. Практическое занятие № 2.3						-
	Практическое занятие № 2.3 Термодинамические процессы идеального газа.		7				
	Термодинамические процессы идеального газа. Лабораторная работа № 2.1			18			-
	лаоораторная раоота лу 2.1			10			

Планируемые			Виды учебн	юй работь	I			
(контролируемые)			Контактн	ая работа			Виды и формы контрольных	
результаты освоения: код(ы) формируемой(ых)	Наименование разделов, тем; виды самостоятельной работы обучающегося; форма(ы) промежуточной аттестации	час час	ческие , час	орные час	Практическая подготовка, час	Самостоятельная работа, час	мероприятий, обеспечивающие по совокупности текущий контроль успеваемости, включая контроль самостоятельной работы обучающегося;	
компетенции(й) и индикаторов достижения компетенций		Лекции, час	Практические занятия, час	Лабораторные работы, час	Практическая подготовка, ча	Самосто работа, 1	самостоятельной работы обучающегося; формы промежуточного контроля успеваемости	
	Определение изобарной теплоемкости и							
	термодинамических свойств воздуха при атмосферном							
	давлении							
	Экзамен	X	X	X	X	4	экзамен по билетам	
	ИТОГО за четвертый семестр	10	26	18		46		
	Пятый семестр							
	Раздел III. Реальные газы. Водяной пар	X	X	X	X	56		
	Тема 3.1	4						
	Термодинамические свойства реальных газов.	T						
	Тема 3.2							
	Вода и водяной пар. Расчет параметров состояния и	4						
ОПК-3:	термодинамических процессов.						Формы текущего контроля	
ИД-ОПК-3.2;	Практическое занятие № 3.1						по разделу III:	
ОПК-4:	Термодинамические свойства воды и водяного пара,		8				- защита лабораторной работы №3.1.	
ИД-ОПК-4.2;	таблицы свойств водяного пара.							
ИД-ОПК-4.3	Практическое занятие № 3.2		8					
	Термодинамические процессы с водяным паром.		0					
	Лабораторная работа № 3.1			16				
	Изохорное нагревание воды и водяного пара			10				
	Экзамен	X	X	X	X	4	экзамен по билетам	
	ИТОГО за пятый семестр	8	16	16		60		
	ИТОГО за весь период	26	42	34		206		

3.3. Краткое содержание учебной дисциплины

№ пп	Наименование раздела и темы дисциплины	Содержание раздела (темы)			
Раздел I	Введение				
Тема 1.1 Тема 1.2	Основные понятия термодинамики Функции состояния и	Техническая термодинамика как теоретическая основа теплоэнергетики. Основные понятия термодинамики. Термодинамическая система и окружающая среда. Функции состояния и функции процесса. Уравнение			
TCMA 1.2	функции процесса	состояния. Равновесные и неравновесные состояния и процессы.			
Раздел II	Первый закон термодинамики. Идеальный газ				
Тема 2.1	Первый закон термодинамики как закон сохранения и превращения энергии	Первый закон термодинамики как закон сохранения и превращения энергии. Теплота и работа - формы передачи энергии. Работа расширения и техническая работа. Внутренняя энергия и энтальпия. Аналитическое выражение первого закона. Уравнение первого закона термодинамики для неравновесных процессов. Уравнение первого закона термодинамики для стационарного одномерного потока.			
Тема 2.2	Термодинамические свойства и процессы идеального газа.	Термодинамические свойства и процессы идеального газа. Уравнение состояния Клапейрона - Менделеева. Калорические свойства идеального газа. Молекулярнокинетическая теория теплоемкости газов. Зависимость теплоемкости идеального газа от температуры. Внутренняя энергия и энтальпия идеального газа. Таблицы термодинамических свойств идеальных газов. Основные процессы идеальных газов. Политропные процессы и их анализ.			
Тема 2.3	Обратимые и необратимые процессы. Второй закон термодинамики. Термодинамический цикл. Цикл Карно. Интеграл Клаузиуса. Энтропия. Т,s-диаграмма	Обратимые и необратимые процессы. Основные причины необратимости процессов. Формулировки второго закона термодинамики и связь между ними. Термодинамические циклы. Термический коэффициент полезного действия цикла теплового двигателя. Цикл Карно и его характеристики эффективности. Доказательство существования энтропии. Расчет изменения энтропии идеального газа с помощью таблиц. <i>Т,s</i> -диаграмма и ее свойства. Термодинамические циклы в <i>Т,s</i> -диаграмме. Возрастание энтропии изолированной системы. Аналитическое выражение второго закона термодинамики.			
Раздел III	Реальные газы. Водяной пар				
Тема 3.1	Термодинамические свойства реальных газов.	Термодинамические свойства реальных газов. p,V -диаграмма. Фазовое равновесие. Фазовая p,T -диаграмма. Правило фаз Гиббса. Уравнение Клапейрона-Клаузиуса. Фактор сжимаемости и z,p - диаграмма.			
Тема 3.2	Вода и водяной пар. Расчет параметров состояния и термодинамических процессов.	Вода и водяной пар. Удельный объем, энтальпия и энтропия воды, влажного, сухого насыщенного и перегретого пара. Сверхкритическая область состояния пара. T , s - и h , s - диаграммы водяного пара. Расчет процессов для водяного пара.			

3.4. Организация самостоятельной работы обучающихся

Самостоятельная работа студента — обязательная часть образовательного процесса, направленная на развитие готовности к профессиональному и личностному самообразованию, на проектирование дальнейшего образовательного маршрута и профессиональной карьеры.

Самостоятельная работа обучающихся по дисциплине организована как совокупность аудиторных и внеаудиторных занятий и работ, обеспечивающих успешное освоение лисциплины.

Аудиторная самостоятельная работа обучающихся по дисциплине выполняется на учебных занятиях под руководством преподавателя и по его заданию. Аудиторная самостоятельная работа обучающихся входит в общий объем времени, отведенного учебным планом на аудиторную работу, и регламентируется расписанием учебных занятий.

Внеаудиторная самостоятельная работа обучающихся – планируемая учебная, научноисследовательская, практическая работа обучающихся, выполняемая во внеаудиторное время по заданию и при методическом руководстве преподавателя, но без его непосредственного участия, расписанием учебных занятий не регламентируется.

Внеаудиторная самостоятельная работа обучающихся включает в себя:

- подготовку к лекциям, практическим и лабораторным занятиям, экзаменам;
- изучение учебников и учебных пособий;
- изучение разделов/тем, не выносимых на лекции и практические занятия самостоятельно;
- изучение теоретического и практического материала по рекомендованным источникам;
 - подготовка к выполнению лабораторных работ и отчетов по ним;
 - выполнение расчетного задания;
 - подготовка к коллоквиуму, контрольной работе и т.п.;
 - выполнение курсовой работы;
 - подготовка к промежуточной аттестации в течение семестра, и пр.

Самостоятельная работа обучающихся с участием преподавателя в форме иной контактной работы предусматривает групповую и (или) индивидуальную работу с обучающимися и включает в себя:

- проведение индивидуальных и групповых консультаций по выполнению разделов курсовой работы;
 - проведение консультаций перед экзаменом.

3.5. Применение электронного обучения, дистанционных образовательных технологий

При реализации программы учебной дисциплины электронное обучение и дистанционные образовательные технологии не применяются.

4. РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ, КРИТЕРИИ ОЦЕНКИ УРОВНЯ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ, СИСТЕМА И ШКАЛА ОЦЕНИВАНИЯ

4.1. Соотнесение планируемых результатов обучения с уровнями сформированности компетенции(й).

Уровни	Итоговое	Оценка в		Показатели уровня сформированности	
сформированности компетенции(-й)	количество баллов	пятибалльной системе	универсальной(-ых) компетенции(-й)	общепрофессиональной(-ых) компетенций	профессиональной(-ых) компетенции(-й)
	в 100-балльной системе по результатам текущей и промежуточной аттестации	текущей и промежуточной аттестации		ОПК-3: ИД-ОПК-3.2; ОПК-4: ИД-ОПК-4.2; ИД-ОПК-4.3	
высокий	85 – 100	отлично/ зачтено (отлично)/ зачтено		Обучающийся: исчерпывающе и логически стройно излагает учебный материал, умеет связывать теорию с практикой, справляется с решением заданий, правильно обосновывает принятые решения; знает основные понятия и термины в области термодинамики, демонстрирует понимание их физического смысла; знает о термических и калорических свойствах веществ, методах получения информации о них; умеет применять основные понятия и термины в области термодинамики для описания физических процессов, происходящих в энергетическом оборудовании; применяет знания о термических и калорических свойствах веществ для расчета и анализа термодинамических процессов в энергетическом оборудовании, умеет пользоваться справочными данными для их поиска; показывает творческие способности в	

1			
		понимании, изложении и практическом	
		использовании законов термодинамики;	
		- знает типовые термодинамические процессы и	
		циклы преобразования энергии, протекающие в	
		теплосиловых, холодильных и теплонасосных	
		установках, показатели их эффективности;	
		методы проведения расчётов процессов переноса	
		теплоты, эффективности теплотехнологических	
		установок; современные методы и средства	
		идентификации тепловых процессов и разработки	
		их рабочих моделей; основы экспериментального	
		исследования и математического моделирования	
		термодинамических процессов и циклов	
		теплосиловых установок;	
		 умеет применять основные понятия и термины 	
		в области технической термодинамики для	
		описания физических процессов, происходящих в	
		техническом оборудовании и системах	
		производства, передачи и трансформации	
		теплоты в теплосиловых, холодильных и	
		теплонасосных установках;	
		 умеет вычислять показатели энергетической 	
		эффективности термодинамических процессов,	
		прямых и обратных термодинамических циклов;	
		определять рабочие параметры технического	
		оборудования, анализировать влияние их	
		изменения на показатели эффективности	
		теплотехнических установок и систем;	
		 умеет в полном объёме с высокой степенью 	
		точности воспроизводить и объяснять	
		пройденный учебный материал, уверенно	
		объяснять теоретические положения,	
		возможности и направления их практического	
		применения;	
		 свободно ориентируется в учебной и 	
		oboodio opicitipycich b y iconon n	

			профессиональной литературе;
			– дает развернутые, исчерпывающие,
			профессионально грамотные ответы на вопросы,
			в том числе, дополнительные.
повышенный	65 – 84	хорошо/	Обучающийся:
		зачтено (хорошо)/	 структурировано излагает учебный материал,
		зачтено	умеет связывать теорию с практикой, с
			незначительными погрешностями справляется с
			решением заданий, в целом правильно
			обосновывает принятые решения;
			 знает основные понятия и термины в области
			термодинамики, демонстрирует понимание их
			физического смысла;
			 знает о термических и калорических свойствах
			веществ, методах получения информации о них;
			 с незначительными неточностями применяет
			основные понятия и термины в области
			термодинамики для описания физических
			процессов, происходящих в техническом
			оборудовании;
			 с негрубыми ошибками применяет знания о
			термических и калорических свойствах веществ
			для расчета и анализа термодинамических
			процессов в энергетическом оборудовании, умеет
			пользоваться справочными данными для их
			поиска;
			 знает основные термодинамические процессы
			и циклы преобразования энергии, протекающие в
			теплосиловых, холодильных и теплонасосных
			установках, показатели их эффективности;
			 умеет применять основные понятия и термины
			в области технической термодинамики для
			описания физических процессов, происходящих в
			техническом оборудовании и системах
			производства, передачи и трансформации
	1		проповодетьи, переда иги гранеформации

		Г			1
				теплосиловых, холодильных и	
				сных установках;	
				идентифицировать процессы и	
				вать их физические и математические	
				ычислять показатели энергетической	
			эффективн	ности термодинамических процессов,	
			прямых и	обратных термодинамических циклов;	
			определят	ъ параметры работы технического	
			оборудова	ния, анализировать влияние их	
			изменения	на показатели эффективности	
			теплотехн	ических установок и систем;	
			– воспро	изводить и объяснять пройденный	
			учебный м	иатериал, демонстрируя достаточный	
			содержате	ельный характер, однако допуская	
			неточност	и и негрубые ошибки при решении	
			практичес	ких задач, объяснении физической	
			природы п	происходящих процессов.	
базовый	41 - 64	удовлетворительно/	– Обучающи	ийся:	
		зачтено		трирует теоретические знания основного	
		(удовлетворительно)/		иатериала дисциплины в объеме,	
		зачтено		иом для дальнейшего освоения ОПОП;	
				сновные понятия и термины в области	
			•	амики, однако затрудняется с их	
			•	ием для описания физических	
			_	в, происходящих в техническом	
			оборудова	ании;	
				термических и калорических свойствах	
				методах получения информации о них;	
				сновные термодинамические процессы	
				реобразования энергии, протекающие в	
				вых, холодильных и теплонасосных	
				х, показатели их эффективности;	
				идентифицировать процессы и	
				вать их математические модели;	
			вычислять	ь показатели энергетической прямых	

			термодинамических циклов; определять параметры работы технического оборудования; — в основном излагает теоретический материал, решает практические задания, но демонстрирует поверхностные знания, допуская существенные ошибки.
низкий	0 – 40	неудовлетворительно/ не зачтено	 Обучающийся: демонстрирует фрагментарные знания теоретического и практического материала, допускает грубые ошибки при его изложении на занятиях и в ходе промежуточной аттестации; испытывает серьёзные затруднения в применении теоретических положений при решении практических задач профессиональной направленности стандартного уровня сложности, не владеет необходимыми для этого навыками и приёмами; не может применить законы термодинамики для описания физических процессов, происходящих в техническом оборудовании и системах производства, передачи и трансформации теплоты в теплосиловых и холодильных установках; не владеет методами решения задач технической термодинамики, методами расчета и анализа эффективности термогидродинамических процессов в теплотехническом оборудовании; выполняет задания только по образцу и под руководством преподавателя; ответ отражает отсутствие знаний на базовом уровне теоретического и практического материала в объеме, необходимом для дальнейшей учебы.

5. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ, ВКЛЮЧАЯ САМОСТОЯТЕЛЬНУЮ РАБОТУ ОБУЧАЮЩИХСЯ

При проведении контроля самостоятельной работы обучающихся, текущего контроля и промежуточной аттестации по учебной дисциплине «Техническая термодинамика» проверяется уровень сформированности у обучающихся компетенций и запланированных результатов обучения по дисциплине, указанных в разделе 2 настоящей программы.

5.1. Формы текущего контроля успеваемости, примеры типовых заданий:

№ пп	Формы текущего контроля	Примеры типовых заданий	Формируемые компетенции
1	Защита ЛР №2.1	1. Существуют ли условия, когда при расчете теплоемкости воздуха необходимо учитывать	ОПК-3:

№ пп	Формы текущего контроля	Примеры типовых заданий	Формируемые компетенции
	«Определение	зависимость теплоемкости от давления? (В – барометрическое давление)	ИД-ОПК-3.2;
	изобарной	- Нет;	ОПК-4:
	теплоемкости и	- Да. Когда p << B;	ИД-ОПК-4.2;
	термодинамических	- Да. Когда p >> B;	ИД-ОПК-4.3
	свойств воздуха	- Только при высокой температуре;	
	при атмосферном	- Только при низкой температуре и р << B.	
	давлении»	2. Существуют ли условия, когда при расчете внутренней энергии воздуха необходимо учитывать	
		ее зависимость от давления? (В – барометрическое давление)	
		- Нет;	
		- Да. Когда р << B;	
		- Да. Когда p >> B;	
		- Только при высокой температуре;	
		- Только при низкой температуре и р << B.	
		3. От каких параметров зависят изохорная теплоемкость с _v и внутренняя энергия и идеального газа?	
		$-c_v = f(T), u = f(T),$	
		$-c_{v} = f(T), u = f(T, p),$	
		$-c_{v} = f(T, p), u = f(T),$	
		$-c_v = f(T, p), u = f(T, p),$	
		$-c_v = const$, $u = const$.	
		4. Используя молекулярно-кинетическую теорию теплоемкости, рассчитать удельную изохорную	
		теплоемкость окиси азота NO ($\mu = 30 \text{ кг/кмоль}$).	
		- 0,416 кДж/(кг·К)	
		- 0,693 kДж/(кг·K)	
		- 0,831 кДж/(кг·К)	
		- 0,970 кДж/(кг·К) - 1,109 кДж/(кг·К)	
		5. По какой из формул следует определять удельную изобарную теплоемкость смеси идеальных	
		газов?	
		$(c_{p,i}, c_{v,i} - y$ дельные изобарная и изохорная теплоемкости і-го компонента смеси; R_{cm} - удельная	
		газовая постоянная смеси; ω_i , x_i – массовая и мольная доли $$ i-го компонента смеси; $$ Σ –	

№ пп	Формы текущего контроля	Примеры типовых заданий	Формируемые компетенции
	Контроли	суммирование по всем компонентам смеси).	компетенции
		$-c_{\mathrm{p,cM}} = \sum c_{\mathrm{p,i}}$	
		$-\mathbf{c}_{p,cM} = \sum_{i} (\mathbf{c}_{p,i} \cdot \mathbf{x}_{i})$	
		$-\mathbf{c}_{\mathrm{p,cM}} = \sum_{i} \mathbf{c}_{\mathrm{p,i}} / \sum_{i} \omega_{\mathrm{i}}$	
		- $c_{ m p,cM} = \sum c_{ m p,i} \ / \sum x_{ m i}$	
		$-c_{p,cM} = \sum (c_{v,i} \cdot \omega_i) + R_{cM}$	
2	Расчетное задание	Задан цикл, состоящий из пяти процессов.	ОПК-3:
		При известных параметрах в точках р а с с ч и т а т ь :	ИД-ОПК-3.2;
		1) параметры (p, v, T) в каждой точке цикла и функции состояния (u, h, s);	ОПК-4:
		2) теплоту, работу расширения, изменение внутренней энергии, энтальпии и энтропии для	ИД-ОПК-4.2;
		каждого процесса. Рассчитать это же за весь цикл;	ИД-ОПК-4.3
		3) термический коэффициент полезного действия цикла;	
		Газ считать идеальным, его теплоемкость – зависящей от температуры, процессы – обратимыми.	
		Представить две сводные таблицы: первая – параметров и функций состояния для каждой	
		точки цикла, и вторая – для теплоты, работы, $\Delta \mathbf{u}$, $\Delta \mathbf{h}$, $\Delta \mathbf{s}$ для всех процессов.	
		Представить цикл в масштабе в р, и Т, в диаграммах. Для вычерчивания цикла при	
		необходимости рассчитать несколько промежуточных точек. Считать, что $s = 0$ при $T_0 = 273,15$ К	
		и $P_0 = 0.1$ МПа.	
		Вариант 1	
		(1-2) v = const $(2-3)$ s = const $(3-4)$ n = const	
		(4-5) T = const $(5-1)$ p = const	
		Рабочее тело — H_2O Показатель политропного процесса $n=1,2$	
		$p_1 = 0.4 \text{ fap}$ $p_2 = 3 \cdot p_1$ $p_4 = p_2$ $t_1 = 0 ^{0}\text{C}$ $t_3 = 700 ^{0}\text{C}$	
		Bapuart 2	
		(1-2) S = Const $(2-3)$ n = Const $(3-4)$ P = Const $(4-5)$ T = Const $(5-1)$ V = Const	
		(3-1) V = Collst	
		Рабочее тело – Не (гелий) Показатель политропного процесса n = 1,3	
		$P_1 = 1,217 \text{ fap}$ $P_2 = 2 \cdot P_1$ $P_3 = 3,5 \cdot P_1$ $P_1 = -20 \cdot P_1$ $P_2 = 2 \cdot P_1$ $P_3 = 3,5 \cdot P_1$ $P_4 = -40 \cdot P_1$	
		1,2,2,1, sup 1,2,2,1,1 1,1 = 20,0 1,4 = 10,0	

№ пп	Формы текущего контроля	Примеры типовых заданий	Формируемые компетенции
		Вариант 3 $(1-2)$ V = Const $(2-3)$ T = Const $(3-4)$ S = Const $(4-5)$ P = Const $(5-1)$ n = Const	
		Рабочее тело — H_2O Показатель политропного процесса $n=1,1$ $P_1=2,2$ бар $P_2=3\cdot P_1$ $P_3=P_2/4$ $P_4=P_2/6$ $T_1=16\ ^0C$	
		Вариант 4 $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	
		Вариант 5 $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	
3	Защита ЛР № 3.1 «Изохорное нагревание воды и водяного пара»	1. Состояние водяного пара (или воды) задано параметрами p = 20 МПа; v = 0,0018 м3/кг. Определить это состояние, используя таблицы термодинамических свойств воды и водяного пара жидкость; - кипящая жидкость; - влажный пар; - сухой насыщенный пар; - перегретый пар 2. Состояние водяного пара (или воды) задано параметрами p = 14,5 МПа; v = 0,0109 м3/кг.	ОПК-3: ИД-ОПК-3.2; ОПК-4: ИД-ОПК-4.2; ИД-ОПК-4.3
		Определить это состояние, используя таблицы термодинамических свойств воды и водяного пара жидкость; - кипящая жидкость; - влажный пар; - сухой насыщенный пар; - перегретый пар 3. По какой формуле рассчитывается теплота изохорного процесса 1-2?	

№ пп	Формы текущего контроля	Примеры типовых заданий	Формируемые компетенции
	•	$-q = h_2 - h_1;$,
		$-q = h_2 - h_1 - v \times (p_2 - p_1);$	
		$-q = h_2 - h_1 - p \times (v_2 - v_1);$	
		$-q = u_2 - u_1 + p_1 \times v_1;$	
		$-q=T_1\times (s_2-s_1);$	
		$-\mathbf{q}=\mathbf{T}_2\times(\mathbf{s}_2-\mathbf{s}_1).$	
		4. На фазовой Т,S-диаграмме указана точка а. Используя таблицы термодинамических свойств	
		воды и водяного пара, определите энтропию S_a .	
		$-S_a=0$ кДж/(кг*К);	
		$-S_a = 0.1059 \text{ кДж/(кг*K)};$	
		$-S_a = 1{,}3026 \text{ кДж/(кг*K)};$	
		$-S_a = 4,412 \text{ кДж/(кг*K)};$	
		$-S_a = 7.3588 \text{ кДж/(кг*K)};$	
		$-S_a = 9,1555 \text{ кДж/(кг*K)};$	
		5. Точка A находится на изохоре $v = 0.0381 \text{ м}^3/\text{кг}$. Определить температуру и энтальпию в точке A,	
		пользуясь таблицами термодинамических свойств воды и водяного пара. $p \nmid p$	
		A VECOUNT T	
		$-t_{A} = 77^{\circ}\text{C}; h_{A} = 322,36 \text{ кДж/кг}$	
		$-t_{A} = 77^{\circ}\text{C}; h_{A} = 2638,0 \text{ кДж/кг}$	
		$-t_{A} = 151$ °C; $h_{A} = 636,6$ кДж/кг	
		$-t_{A} = 151$ °C; $h_{A} = 2747,1$ кДж/кг	
		$-t_{A} = 266^{\circ}C; h_{A} = 1164,8 \text{ кДж/кг}$	
		- $t_A = 266$ °C; $h_A = 2792.8$ кДж/кг	

5.2. Критерии, шкалы оценивания текущего контроля успеваемости:

Наименование оценочного средства		Шкалы о	ценивани	Я
(контрольно- оценочного мероприятия)	Критерии оценивания	100-балльная система		балльная стема
Расчетное задание	Работа выполнена полностью. Нет ошибок в расчетах. Возможно наличие одной неточности или описки, не являющиеся следствием незнания или непонимания учебного материала. Обучающийся показал полный объем знаний, умений в освоении пройденных тем и применение их на практике.	33-40 баллов		5
	Работа выполнена полностью, но обоснований шагов решения недостаточно. Допущена одна ошибка или два-три недочета.	25-32 баллов		4
	Допущены более одной ошибки или более двух-трех недочетов.	17-24 баллов		3
	Работа выполнена не полностью. Допущены грубые ошибки.	1-16 баллов		2
	Работа не выполнена.	0 баллов		
Тест для защиты ЛР	За выполнение каждого тестового задания испытуемому выставляются баллы. Тип	25-30 баллов	5	90-100%
№2.1	используемой шкалы оценивания - номинальная. Номинальная шкала предполагает, что за правильный ответ к каждому заданию	19-24 балла	4	75% - 89%
	выставляется один балл, за не правильный — ноль. В соответствии с номинальной шкалой, оценивается всё задание в целом, а не какая-либо из его частей.	13 - 18 баллов	3	41% - 74%
		0 – 12 баллов	2	40% и менее 40%
Тест для защиты	За выполнение каждого тестового задания испытуемому выставляются баллы. Тип	57-70 баллов	5	90-100%

Наименование оценочного средства		Шкалы оценивания		
(контрольно- оценочного мероприятия)	Критерии оценивания	100-балльная система		алльная тема
ЛР№3.1, №4.1	используемой шкалы оценивания - номинальная. Номинальная шкала предполагает, что за правильный ответ к каждому заданию	43-56 баллов	4	75% - 89%
	выставляется один балл, за не правильный — ноль. В соответствии с номинальной шкалой, оценивается всё задание в целом, а не какая-либо из его частей.	29-42 балла	3	41% - 74%
		0 – 28 баллов	2	40% и менее 40%

5.3. Промежуточная аттестация:

Форма промежуточной	Типовые контрольные задания и иные материалы
аттестации для проведения промежуточной аттестации:	
Экзамен:	4 семестр
в устной форме по билетам	Билет 1
	1. Уравнение Первого закона термодинамики для потока вещества (вывод, основные допущения, понятие входящих в
	уравнение величин).
	2. 0,5 кг диоксида углерода занимает при давлении 0,5 МПа объем 0,15 м ³ . Насколько изменится его температура при
	изохорном уменьшении давления до 0,15 МПа? Сколько теплоты будет при этом отведено?
	Билет 2
	1. Обобщающее значение политропного процесса. Процессы в р,υ- диаграмме. Изменение теплоемкости газа в
	зависимости от заданного показателя политропы процесса. Техническая работа в политропном процессе.

- 2. $0,4\,\mathrm{m}^3\,$ воздуха при температуре $t_1=64,4\,^0\mathrm{F}$ и $P_1=750,06\,\mathrm{mm}$ рт.ст. сжимаются адиабатно до объема $0,1\,\mathrm{m}^3$. Определить затраченную работу и конечное давление газа. Билет 3
- 1. Цикл Карно. КПД цикла Карно. Теорема Карно.
- $2.\,\,0,5$ кг воздуха имеют в начальном состоянии температуру $300\,\,^{0}$ С и занимают объем $0,6\,\,\mathrm{M}^{3}$. Определить изменение внутренней энергии, теплоту и работу расширения газа при изобарном расширении в два раза. Билет 4
- 1. Молекулярно-кинетическая теория теплоемкости идеальных газов (применение для одноатомного и многоатомного газа).
- 2. 0,1 кг диоксида углерода при давлении $7 \cdot 10^5$ Па и начальной температуре $t_1 = 1112~^0$ F расширяется политропно до давления 0,25~ МПа. Определить изменение внутренней энергии газа, совершенную работу и количество теплоты. Показатель политропы n = 1,12.

5 семестр

Билет 1

- 1. 1. Принципиальная схема «простой» ПТУ и цикл Ренкина на перегретом паре в Т,s- диаграмме. Удельная работа ПТУ, подведенная и отведенная теплота, термический и внутренний КПД цикла.
- 2. Определить теоретическую и действительную мощности паровой турбины ПТУ, если давление перед турбиной составляет $p_1 = 18$ МПа, температура $t_1 = 500$ °C, а давление в конденсаторе $p_2 = 7$ кПа. Расход пара 325 т/ч. Внутренний относительный КПД турбины составляется 0,90. Билет 2
- 1. Принципиальная схема «простой» ПТУ и цикл Ренкина на перегретом паре в Т,s- диаграмме. Влияние начальных и конечных параметров пара на термический КПД цикла Ренкина.
- 2. Паротурбинная установка работает по циклу Ренкина на перегретом паре. Параметры пара перед турбиной $p_1 = 9~\mathrm{M\Pi a}$; $t_1 = 540^{\circ}\mathrm{C}$. Давление пара в конденсаторе 5 кПа. Определить термический КПД цикла с учетом работы насоса. Определить также теоретические мощности турбины, насоса и всей установки, если расход пара $400~\mathrm{T/y}$. Представить цикл в T, s диаграмме. Билет 3
- 1. Термодинамические свойства и процессы воды и водяного пара. Термодинамические диаграммы (p,T-,p,v-,T,s-) воды и водяного пара на примере процесса парообразования, терминология (кипящая жидкость, влажный, сухой насыщенный и перегретый пар, и пр.). Определение свойств.
- 2. Параметры пара перед паровой турбиной мощностью 100 MBт равны $p_1 = 10,5$ МПа; $t_1 = 540$ °C. Давление пара за турбиной 5,2 кПа, внутренний относительный КПД турбины 0,85. Определить расход

пара через турбину, уменьшение удельной работы турбины из-за трения, а также температуру и удельный
объем пара за турбиной. Представить обратимый и необратимый процессы расширения пара в T,s -
диаграмме.
Билет 4
1. Теплофикационные циклы ПТУ (циклы ПТУ-ТЭЦ). Схема ТЭЦ с турбиной типа Р (с
противодавлением). Основные характеристики цикла.
2. Паротурбинная установка работает по циклу Ренкина на перегретом паре. Параметры пара перед
турбиной $p_1 = 8$ МПа; $T_1 = 510$ °С. Давление пара в конденсаторе 4,6 кПа. Определить термический КПД
цикла с учетом работы насоса. Определить также теоретические мощности турбины, насоса и всей

установки, если расход пара — 630 т/ч. Представить цикл в T, s — диаграмме.

5.4. Критерии, шкалы оценивания промежуточной аттестации учебной дисциплины:

Форма промежуточной аттестации	T.C.	Шкалы оценивания		
Наименование оценочного средства	Критерии оценивания	100-балльная система	Пятибалльная система	
Экзамен: в устной форме по билетам 1-й вопрос: 0 — 15 баллов практическое задание: 0 — 15 баллов	Обучающийся: — демонстрирует знания отличающиеся глубиной и содержательностью, дает полный исчерпывающий ответ, как на основные вопросы билета, так и на дополнительные; — свободно владеет научными понятиями, ведет диалог и вступает в научную дискуссию; — способен к интеграции знаний по определенной теме, структурированию ответа, к анализу положений существующих теорий, научных школ, направлений по вопросу билета; — логично и доказательно раскрывает проблему, предложенную в билете; — свободно выполняет практические задания повышенной сложности, предусмотренные программой, демонстрирует системную работу с основной и дополнительной литературой. Ответ не содержит фактических ошибок и характеризуется глубиной, полнотой, уверенностью суждений, иллюстрируется примерами, в том числе из собственной практики.	24 -30 баллов	5	

Форма промежуточной аттестации		Шкалы оценивания		
Наименование оценочного средства	Критерии оценивания	100-балльная система	Пятибалльная система	
	Обучающийся: — показывает достаточное знание учебного материала, но допускает несущественные фактические ошибки, которые способен исправить самостоятельно, благодаря наводящему вопросу; — недостаточно раскрыта проблема по одному из вопросов билета; — недостаточно логично построено изложение вопроса; — успешно выполняет предусмотренные в программе практические задания средней сложности, активно работает с основной литературой, — демонстрирует, в целом, системный подход к решению практических задач, к самостоятельному пополнению и обновлению знаний в ходе дальнейшей учебной работы и профессиональной деятельности. В ответе раскрыто, в основном, содержание билета, имеются неточности при ответе на дополнительные вопросы.	12 – 23 баллов	4	
	Обучающийся: — показывает знания фрагментарного характера, которые отличаются поверхностностью и малой содержательностью, допускает фактические грубые ошибки; — не может обосновать закономерности и принципы, объяснить факты, нарушена логика изложения, отсутствует осмысленность представляемого материала, представления о межпредметных связях слабые; — справляется с выполнением практических заданий, предусмотренных программой, знаком с основной литературой, рекомендованной программой, допускает погрешности и ошибки при теоретических ответах и в ходе практической работы. Содержание билета раскрыто слабо, имеются неточности при ответе на основные и дополнительные вопросы билета, ответ носит репродуктивный характер. Неуверенно, с большими затруднениями решает практические задачи или не справляется с ними	6 – 11 баллов	3	

Форма промежуточной аттестации	To	Шкалы оценивания		
Наименование оценочного средства	— Критерии оценивания	100-балльная система	Пятибалльная система	
	самостоятельно.			
	Обучающийся, обнаруживает существенные пробелы в знаниях основного учебного материала, допускает принципиальные ошибки в выполнении предусмотренных программой практических заданий. На большую часть дополнительных вопросов по содержанию экзамена затрудняется дать ответ или не дает верных ответов.	0 – 5 баллов	2	

5.5. Система оценивания результатов текущего контроля и промежуточной аттестации.

Оценка по дисциплине выставляется обучающемуся с учётом результатов текущей и промежуточной аттестации.

Форма контроля	100-балльная система	Пятибалльная система
Текущий контроль:		
- защита лабораторной работы №2.1	0 - 30 баллов	2-5
- расчетное задание	0 - 40 баллов	2-5
- защита лабораторной работы №3.1	0 - 70 баллов	2-5
Промежуточная аттестация	0 - 30 баллов	отлично
(традиционная форма)		хорошо
Итого за семестр	0 - 100 баллов	удовлетворительно
экзамен		неудовлетворительно
		зачтено
		не зачтено

Полученный совокупный результат конвертируется в пятибалльную систему оценок в соответствии с таблицей:

100-балльная система	пятибалльная система		
	зачет с оценкой/экзамен	зачет	
85 — 100 баллов	отлично зачтено (отлично)		
65 — 84 баллов	хорошо зачтено (хорошо)	зачтено	
41 – 64 баллов	удовлетворительно зачтено (удовлетворительно)		
0 – 40 баллов	неудовлетворительно	не зачтено	

6. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Реализация программы предусматривает использование в процессе обучения следующих образовательных технологий:

- проведение интерактивных лекций;
- использование на лекционных занятиях наглядных пособий;
- самостоятельная работа в системе компьютерного тестирования.

7. ПРАКТИЧЕСКАЯ ПОДГОТОВКА

Практическая подготовка в рамках учебной дисциплины реализуется при проведении практических занятий, лабораторных работ и иных аналогичных видов учебной деятельности, предусматривающих участие обучающихся в выполнении отдельных элементов работ, связанных с будущей профессиональной деятельностью.

8. ОРГАНИЗАЦИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ДЛЯ ЛИЦ С ОГРАНИЧЕННЫМИ ВОЗМОЖНОСТЯМИ ЗДОРОВЬЯ

При обучении лиц с ограниченными возможностями здоровья и инвалидов используются подходы, способствующие созданию безбарьерной образовательной среды: технологии дифференциации и индивидуального обучения, применение соответствующих методик по работе с инвалидами, использование средств дистанционного общения,

проведение дополнительных индивидуальных консультаций по изучаемым теоретическим вопросам и практическим занятиям, оказание помощи при подготовке к промежуточной аттестации.

При необходимости рабочая программа дисциплины может быть адаптирована для обеспечения образовательного процесса лицам с ограниченными возможностями здоровья, в том числе для дистанционного обучения.

Учебные и контрольно-измерительные материалы представляются в формах, доступных для изучения студентами с особыми образовательными потребностями с учетом нозологических групп инвалидов:

Для подготовки к ответу на практическом занятии, студентам с ограниченными возможностями здоровья среднее время увеличивается по сравнению со средним временем подготовки обычного студента.

Для студентов с инвалидностью или с ограниченными возможностями здоровья форма проведения текущей и промежуточной аттестации устанавливается с учетом индивидуальных психофизических особенностей (устно, письменно на бумаге, письменно на компьютере, в форме тестирования и т.п.).

Промежуточная аттестация по дисциплине может проводиться в несколько этапов в форме рубежного контроля по завершению изучения отдельных тем дисциплины. При необходимости студенту предоставляется дополнительное время для подготовки ответа на зачете или экзамене.

Для осуществления процедур текущего контроля успеваемости и промежуточной аттестации обучающихся создаются, при необходимости, фонды оценочных средств, адаптированные для лиц с ограниченными возможностями здоровья и позволяющие оценить достижение ими запланированных в основной образовательной программе результатов обучения и уровень сформированности всех компетенций, заявленных в образовательной программе.

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Характеристика материально-технического обеспечения дисциплины (модуля) составляется в соответствии с требованиями ФГОС ВО.

Материально-техническое обеспечение дисциплины при обучении с использованием традиционных технологий обучения.

Наименование учебных аудиторий, лабораторий, мастерских, библиотек, спортзалов, помещений для хранения и профилактического обслуживания учебного оборудования и т.п.	Оснащенность учебных аудиторий, лабораторий, мастерских, библиотек, спортивных залов, помещений для хранения и профилактического обслуживания учебного оборудования и т.п.	
115419, г. Москва, ул. Донская, д. 39, стр. 4		
аудитории для проведения занятий	комплект учебной мебели,	
лекционного типа	технические средства обучения, служащие для	
	представления учебной информации большой	
	аудитории:	
	– ноутбук;	
	– проектор,	
	– экран	
аудитории для проведения занятий	комплект учебной мебели,	
семинарского типа, групповых и	технические средства обучения, служащие для	
индивидуальных консультаций, текущего	представления учебной информации большой	
контроля и промежуточной аттестации, по	аудитории:	
практической подготовке, групповых и	– ноутбук;	
индивидуальных консультаций	– проектор,	

Наименование учебных аудиторий, лабораторий, мастерских, библиотек, спортзалов, помещений для хранения и профилактического обслуживания учебного оборудования и т.п.	Оснащенность учебных аудиторий, лабораторий, мастерских, библиотек, спортивных залов, помещений для хранения и профилактического обслуживания учебного оборудования и т.п.	
	– экран	
Помещения для самостоятельной работы	Оснащенность помещений для самостоятельной	
обучающихся	работы обучающихся	
Аудитория для самостоятельной работы	компьютерная техника;	
студента, а. 6315	подключение к сети «Интернет»	
119071, г. Москва, ул. М. Калужская, д. 1, стр. 3		
Читальный зал библиотеки	компьютерная техника;	
	подключение к сети «Интернет»	

Технологическое обеспечение реализации программы осуществляется с использованием элементов электронной информационно-образовательной среды университета.

10. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ/УЧЕБНОГО МОДУЛЯ

№ п/п	Автор(ы)	Наименование издания	Вид издания (учебник, УП, МП и др.)	Издательство	Год издания	Адрес сайта ЭБС или электронного ресурса (заполняется для изданий в электронном виде)	Количество экземпляров в библиотеке Университета	
10.1 O	10.1 Основная литература, в том числе электронные издания							
1	Кириллин В.А., Сычев В.В., Шейндлин А.Е	Техническая термодинамика	Учебник	М.: Энергия	1968 1974		39	
10.2 Д	ополнительная литер	атура, в том числе электронные	: издания					
1	Ривкин С.Л.	Термодинамические свойства воды и водяного пара: справочник / С. Л. Ривкин, А. А. Александров 2-е изд., перераб. и доп.	Справочник	М.: Энергоатомиздат	1984		в библиотеке – 45 шт.	
2	Ривкин С.Л.	Термодинамические свойства газов	Справочник	4-е изд. – М: Энергоатомиздат	1987		в библиотеке – 15 шт.	
3	Шарпар Н.М., Марков В.В.	Паровые турбины	УП	М.: МГУДТ	2016	http://znanium.com/bookread2.php?b ook=792237	на кафедре – 8 шт.	
4	Соколовский Р.И., Шарпар Н.М.	Техническая термодинамика	УП	М.: МГУДТ	2016	http://znanium.com/bookread2.php?b ook=792235	на кафедре – 8 шт.	
10.3 M	Іетодические материа	алы (указания, рекомендации по	освоению дисциг	лины авторов РГУ им. А	А. Н. Косыгин	a)		
	Соколовский Р.И., Соколовская Т.С.	Расчет круговых процессов	МУ	М.: ГОУВПО "МГТУ имени А. Н. Косыгина"	2010	http://znanium.com/bookread2.php?b ook=466491	на кафедре – 2 шт.	
	Соколовский Р.И., Шарпар Н.М., Соколовская Т.С.	Технико-экономический расчет компрессора	МУ	М.: ФГБОУ ВПО «МГТУ им. А.Н. Косыгина»	2011	http://znanium.com/bookread2.php?book=466479	на кафедре – 1 шт.	
	Шарпар Н.М., Марков В.В.	Тепловой расчет паровой турбины	УМП	М.:МГУДТ	2016	http://znanium.com/bookread2.php?b ook=961362	на кафедре – 5 шт.	
	Шарпар Н.М., Соколовский Р.И.	Энергетическая эффективность угольно-топливного цикла	УМП	М.:РГУ им. А.Н. Косыгина	2017	http://znanium.com/bookread2.php?b ook=961363	на кафедре – 5 шт.	

11. ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОГО ПРОЦЕССА

11.1. Ресурсы электронной библиотеки, информационно-справочные системы и профессиональные базы данных:

 $\it Информация\ oб\ ucnoльзуемых\ pecypcax\ cocтавляется\ в\ cooтветствии\ c\ Приложением\ 3\ к\ OПОП\ BO.$

№ пп	Электронные учебные издания, электронные образовательные ресурсы
1.	ЭБС «Лань» http://www.e.lanbook.com/
2.	«Znanium.com» научно-издательского центра «Инфра-М»
	http://znanium.com/
3.	Электронные издания «РГУ им. А.Н. Косыгина» на платформе ЭБС «Znanium.com»
	http://znanium.com/

11.2. Перечень программного обеспечения

Перечень используемого программного обеспечения с реквизитами подтверждающих документов составляется в соответствии с Приложением № 2 к ОПОП ВО.

№п/п	Программное обеспечение	Реквизиты подтверждающего документа/ Свободно распространяемое
1.	Windows 10 Pro, MS Office 2019	контракт № 18-ЭА-44-19 от 20.05.2019
2.	PrototypingSketchUp: 3D modeling for everyone	контракт № 18-ЭА-44-19 от 20.05.2019
3.	V-Ray для 3Ds Max	контракт № 18-ЭА-44-19 от 20.05.2019

ЛИСТ УЧЕТА ОБНОВЛЕНИЙ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ/МОДУЛЯ

В рабочую программу учебной дисциплины/модуля внесены изменения/обновления и утверждены на заседании кафедры:

№ пп	год обновления РПД	характер изменений/обновлений с указанием раздела	номер протокола и дата заседания кафедры
	_		