Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Белгородский Валерий Савельевич

Должность: Ректор Министерство науки и высшего образования Российской Федерации Дата подписания: 12.05.2025 13 2.45 Федеральное государственное бюджетное образовательное учреждение

Уникальный программный ключ: высшего образования

8df276ee93e17c18e7bee9e7cad2d0ed9ab82473 высшего ооразования «Российский государственный университет им. А.Н. Косыгина

(Технологии. Дизайн. Искусство)»

химических технологий и промышленной экологии Институт

Кафедра Физики и высшей математики

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Физика

Уровень образования бакалавриат

05.03.06 Направление подготовки Экология и природопользование

Профиль Экологическое проектирование и экспертиза

Срок освоения

образовательной

программы по очной форме

обучения

4 года 11 месяцев

Форма(-ы) обучения заочная

Рабочая программа учебной дисциплины «Физика» обязательной части основной профессиональной образовательной программы высшего образования, рассмотрена и одобрена на заседании кафедры, протокол № 5 от 22.02.2021 г.

Разработчик(и) рабочей программы дисциплины: «Физика»

1. Доцент кафедры И.А. Гвоздкова Заведующий кафедрой: В.Ф. Скородумов

1. ОБЩИЕ СВЕДЕНИЯ

Учебная дисциплина «Физика» изучается на первом и втором курсах. Курсовая работа/Курсовой проект –не предусмотрен

1.1. Форма промежуточной аттестации:

Первый курс - зачет

1.2. Место учебной дисциплины в структуре ОПОП

Учебная дисциплина «Физика» относится к обязательной части основной профессиональной образовательной программы высшего образования.

Основой для освоения дисциплины являются результаты обучения по предшествующим лисшиплинам:

Математика;

Результаты обучения по учебной дисциплине используются при изучении следующих дисциплин:

- Теплофизика;
- Теория вероятностей и математическая статистика в экологии и теплоэнергетике;
 - Физико-химические методы анализа;
 - Гидрогазодинамика;
 - Техническая термодинамика и теплопередача;
 - Теория и практика проведения экспериментальных исследований;
 - Техногенные системы и экологический риск;
- Производственная практика. Технологическая (проектно-технологическая)
 практика.
 - Учебная практика. Ознакомительная практика.

Результаты освоения учебной дисциплины в дальнейшем будут использованы при прохождении учебной и производственной практики и подготовке к государственной итоговой аттестации.

2. ЦЕЛИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Целями изучения дисциплины «Физика» являются:

- формирование представлений о физических процессах и закономерностях и умений решать прикладные задачи в сфере экологии и природопользования на основе законов физики;
- формирование навыков использования знаний в области физики при планировании и проведении теоретических и экспериментальных исследований в сфере профессиональной деятельности.
- формирование у обучающихся компетенций, установленных образовательной программой в соответствии с ФГОС ВО по данной дисциплине.

Результатом обучения по учебной дисциплине «Физика» является овладение обучающимися знаниями, умениями, навыками и опытом деятельности, характеризующими процесс формирования компетенций и обеспечивающими достижение планируемых результатов освоения учебной дисциплины.

2.1. Формируемые компетенции, индикаторы достижения компетенций, соотнесённые с планируемыми результатами обучения по дисциплине:

Код и наименование	Код и наименование	Планируемые результаты обучения
, ,	индикатора	
компетенции	достижения компетенции	по дисциплине

УК-1 Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленной задачи	ИД-УК-1.2 Использование системных связей и отношений между явлениями, процессами и объектами; методов поиска информации, ее системного и критического анализа при формировании собственных мнений, суждений, точек зрения;	Умеет последовательно решать задачи профессиональной деятельности, вырабатывать конкретные алгоритмы в сфере экологии и природопользования на основе знаний физических закономерностей.
ОПК-1 Способен применять базовые знания фундаментальных наук о Земле, естественно- научного и математического циклов при решении задач в области экологии и природопользования	ИД-ОПК-1.3 Применение теоретических основ физики при решении задач в области экологии и природопользования	Знает теоретические основы физики. Владеет навыками использования знаний в области физики при решении задач в области экологии и природопользования.

Общая трудоёмкость учебной дисциплины по учебному плану составляет:

по заочной форме обучения	3	3.e.	108	час.
---------------------------	---	------	-----	------

2.2. Структура учебной дисциплины для обучающихся по видам занятий

Структура и объем дисциплины										
Объем дисциплины по семестрам	10Й		Контактная аудиторная работа, Самостоятел обучающ				-			
	форма промежуточной аттестации	всего, час	лекции, час	практические занятия, час	лабораторные занятия, час	практическая подготовка, час	курсовая работа/курсовой проект	самостоятельная работа обучающегося, час	промежуточная аттестация, час	
1 курс										
Установочня сессия		36	4	4				28		
зимняя сессия		36	4	4	2			26		
летняя сессия	зачет	36		2				30	4	
Всего:	зачет	108	8	10	2			84	4	

2.3. Структура учебной дисциплины для обучающихся по разделам и темам дисциплины:

Планируемые				бной работы				
(контролируемые)			Контакт	ная работа			Виды и формы контрольных	
результаты освоения: код(ы) формируемой(ых) компетенции(й) и индикаторов достижения компетенций	Наименование разделов, тем; форма(ы) промежуточной аттестации		Практические занятия, час	Лабораторные работы/ индивидуальные занятия, час Практическая подготовка, час		Самостоятельная работа, час	мероприятий, обеспечивающие по совокупности текущий контроль успеваемости; формы промежуточного контроля успеваемости	
	Первый курс							
УК-1: ИД-УК-1.2 ОПК-1:	Раздел 1. Основные понятия современной физики и законы механики.	1	1	2		12	- Устный опрос перед началом лабораторной работы; - письменный отчет по лабораторной	
ИД-ОПК-1.3	Раздел 2. Колебания и волны.		2			12	работе; - письменное тестирование на	
	Раздел 3. Основы термодинамики и молекулярной физики.		1			12	практических занятиях.	
	Раздел 4. Электричество и магнетизм.	1	2			12		
	Раздел 5. Волновая и геометрическая оптика.		2			12		
УК-1:	Раздел 6. Основы квантовой физики.		1			12	- Письменное тестирование на	
ИД-УК-1.2 ОПК-1: ИД-ОПК-1.3	Раздел 7. Основы ядерной физики.		1			12	практических занятиях.	
УК-1: ИД-УК-1.5 ОПК-1: ИД-ОПК-1.3	Зачет					4	Зачет в письменной форме по билетам	
. ,	ИТОГО за первый курс	4	10	2		88		
	ИТОГО за весь период	4	10	2		88		

2.4. Краткое содержание учебной дисциплины/учебного модуля

№ пп	Наименование раздела и темы дисциплины	Содержание раздела (темы)
Раздел 1	Основные понятия	Предмет изучения физики. Роль достижений физики в
	современной физики и	развитии общества. Основные понятия физики: материя,
	законы механики.	энергия, движение, пространство, время. Вещество, поле,
		физический вакуум. Закон сохранения и превращения
		энергии. Механическое движение и его относительность.
		Основы кинематики. Кинематические характеристики
		движения. Перемещение, скорость (мгновенная, средняя), пройденный путь. Ускорение, ускорение при
		пройденный путь. Ускорение, ускорение при криволинейном движении, тангенциальное и нормальное
		ускорения. Кинематика вращательного движения.
		Вращение по окружности с постоянной скоростью.
		Поступательное и вращательное движение твердого тела.
		Угловая скорость, угловое ускорение. Основы динамики.
		Инерциальные и неинерциальные системы отсчета.
		Принцип относительности Галилея. Законы Ньютона.
		Основная задача классической механики. Динамика
		материальной точки. Импульс материальной точки и импульс силы. Силы в механике. Упругость. Закон Гука.
		Трение. Работа и энергия. Потенциальная поле, работа
		консервативных сил, потенциальная энергия. Кинетическая
		энергия. Динамика системы материальных точек. Динамика
		вращательного движения. Момент сил и момент импульса.
		Основное уравнение динамики вращательного движения.
		Законы сохранения импульса, механической энергии и
		момента импульса. Основы статики. Закон всемирного
		тяготения. Гравитационное взаимодействие. Масса
		инертная и гравитационная. Невесомость и перегрузка. Использование достижений классической механики в
		экологии и природопользовании. Описание механического
		движения в ĈTÔ и OTO.
Раздел 2	Колебания и волны.	Основные характеристики колебательных процессов.
		Свободные колебания. Гармонические колебания. Затухающие колебания. Вынужденные колебания.
		Резонанс. Автоколебания. Колебания груза на пружине.
		Колебания физического и математического маятника. Виды
		волн. Основные характеристики волновых процессов.
		Уравнение плоской бегущей гармонической волны.
		Механические волны. Звук и его применение. Инфразвук.
		Ультразвук. Акустический эффект Доплера и его
		применение. Электромагнитные волны. Волновое
Раздел 3	Основы термодинамики	уравнение. Тепловое движение. Основные термодинамические
т иодол о	и молекулярной физики.	понятия. Термодинамические системы и параметры.
	V	Количество теплоты. Внутренняя энергия
		термодинамической системы. Работа в термодинамике и
		способы ее вычисления. Первый закон термодинамики.
		Изопроцессы. Теплоемкость вещества. Второй закон
		термодинамики. Энтропия. Тепловые двигатели и их КПД.
		Основы молекулярно-кинетической теории строения и
		тепловых свойств вещества. Агрегатные состояния вещества. Модель идеального газа. Уравнения состояния
		газов. Основы терморегуляции организма. Тепловой
	1	

		баланс Земли. Использование достижений классической
		термодинамики в экологии и природопользовании.
Раздел 4	Электричество и магнетизм.	Электрические заряды и их свойства. Электрическое поле. Закон Кулона. Электростатическое поле. Напряженность электрического поля. Силовые линии поля. Принцип суперпозиции электрических полей. Электрический диполь. Работа в электростатическом поле. Потенциал. Эквипотенциальные поверхности. Связь между напряженностью и потенциалом электрического поля. Проводники в электростатическом поле. Электрическая емкость. Конденсаторы, их соединения. Энергия электрического поля. Диэлектрики в электростатическом поле. Постоянный электрический ток. Сила тока и плотность тока. Электродвижущая сила (ЭДС). Источники ЭДС. Закон Ома для однородного и неоднородного участков цепи, для замкнутой цепи. Правила Кирхгофа. Магнитное поле, его характеристики и источники. Сила Ампера. Сила Лоренца. Закон Био-Савара-Лапласа. Электромагнитное взаимодействие. Законы электромагнетизма. Основы классической электродинамики Максвелла. Уравнения Максвелла. Электромагнитные колебания и волны. Переменный электрический ток. Полное сопротивление в электрических цепях. Закон Ома для переменных тока и напряжения. Электропроводность биологических тканей. Электрические поля органов человека. Использование достижений классической электродинамики в экологии и природопользовании.
Раздел 5	Волновая и геометрическая оптика.	Развитие представлений о природе света. Волновые и корпускулярные представления о свете. Волновая оптика. Электромагнитное излучение оптического диапазона. Отражение, преломление, интерференция, дифракция, дисперсия и поляризация света. Геометрическая оптика — предельный случай волновой оптики. Глаз — оптическая система. Микроскопия. Разрешающая способность оптических приборов и глаза. Спектральные приборы. Дифракционная решетка. Энергетические характеристики световых потоков: поток светового излучения и плотность потока (интенсивность). Коррекция зрения. Оптические методы контроля состояния окружающей среды.
Раздел 6	Основы квантовой физики.	Квантовый характер природных процессов. Тепловое излучение. Гипотеза Планка о квантах излучения и поглощения. Характеристики и законы теплового излучения. Спектр излучения абсолютно черного тела. Формула Планка. Излучение Солнца. Применение закона Кирхгофа для измерения яркостной температуры. Вычисление радиационной температуры на основании закона Стефана-Больцмана. Определение цветовой температуры с использованием закона смещения Вина. Источники теплового излучения и их использование в экологии и природопользовании. Фотоэффект и эффект Комптона. Модели атомов. Основы квантовой механики. Уравнение Шредингера. Схема электронных энергетических уровней атомов и молекул и переходов между ними.

Раздел 7	Основы ядерной физики.	Строение атомного ядра, условное обозначение ядра атома.						
		Свойства ядерных сил. Сильное ядерное взаимодействие.						
		Энергия связи атомного ядра. Ядерные реакции. Получение						
		энергии в ядерных процессах. Радиоактивность. Виды						
		радиации. Закон радиоактивного распада. Слабое ядерное						
		взаимодействие. Взаимодействие радиоактивны						
		излучений с веществом. Ионизирующие излучения.						
		Дозиметрия ионизирующего излучения. Поглощенная,						
		экспозиционная и эквивалентная дозы. Радиационный фон.						
		Защита от ионизирующего излучения.						
		Радионуклидные методы диагностики состояния						
		окружающей среды. Лучевая терапия.						

2.5. Организация самостоятельной работы обучающихся

Самостоятельная работа студента — обязательная часть образовательного процесса, направленная на развитие готовности к профессиональному и личностному самообразованию, на проектирование дальнейшего образовательного маршрута и профессиональной карьеры.

Самостоятельная работа обучающихся по дисциплине организована как совокупность аудиторных и внеаудиторных занятий и работ, обеспечивающих успешное освоение дисциплины.

Аудиторная самостоятельная работа обучающихся по дисциплине выполняется на учебных занятиях под руководством преподавателя и по его заданию. Аудиторная самостоятельная работа обучающихся входит в общий объем времени, отведенного учебным планом на аудиторную работу, и регламентируется расписанием учебных занятий.

Внеаудиторная самостоятельная работа обучающихся – планируемая учебная, научно-исследовательская, практическая работа обучающихся, выполняемая во внеаудиторное время по заданию и при методическом руководстве преподавателя, но без его непосредственного участия; расписанием учебных занятий она не регламентируется.

Внеаудиторная самостоятельная работа обучающихся включает в себя:

- подготовку к лекциям, практическим и лабораторным занятиям, зачету, экзамену;
 - изучение учебных и учебно-методических рекомендаций;
- изучение теоретического и практического материала по рекомендованным источникам;
 - подготовку к выполнению лабораторных работ и отчетов по ним;
 - подготовку к промежуточной аттестации в течение семестра.

Самостоятельная работа обучающихся с участием преподавателя в форме иной контактной работы предусматривает групповую и (или) индивидуальную работу с обучающимися и включает в себя:

- проведение индивидуальных и групповых консультаций по отдельным разделам дисциплины;
 - проведение консультаций перед экзаменом.
- 2.6. Применение электронного обучения, дистанционных образовательных технологий

При реализации программы учебной дисциплины возможно применение электронного обучения (ЭО) и дистанционных образовательных технологий (ДОТ).

Реализация программы учебной дисциплины с применением электронного обучения и дистанционных образовательных технологий регламентируется действующими локальными актами университета.

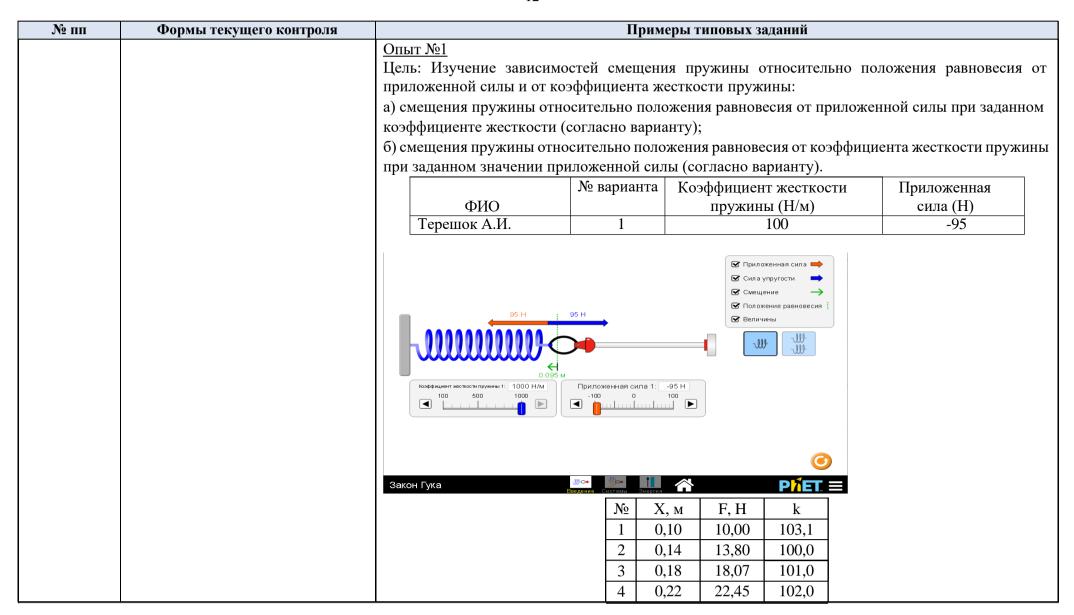
Применяются следующие разновидности реализации программы с использованием ЭО и ДОТ:

использование ЭО и ДОТ	использование ЭО и ДОТ	объем, час	включение в учебный процесс
Смешанное обучение	Лекции	6	В соответствии с расписанием учебных занятий
Смешанное обучение	Лабораторные занятия	2	В соответствии с расписанием учебных занятий
Смешанное обучение	Практические занятия	12	В соответствии с расписанием учебных занятий

В электронную образовательную среду, по необходимости, могут быть перенесены отдельные виды учебной деятельности.

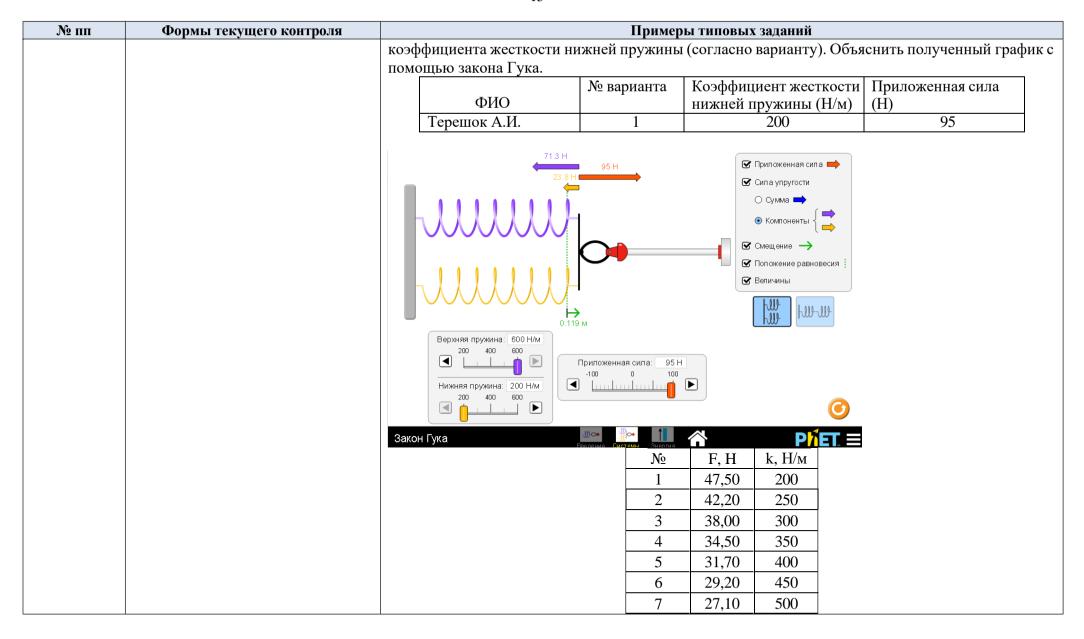
3. РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ/МОДУЛЮ, КРИТЕРИИ ОЦЕНКИ УРОВНЯ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ, СИСТЕМА И ШКАЛА ОЦЕНИВАНИЯ

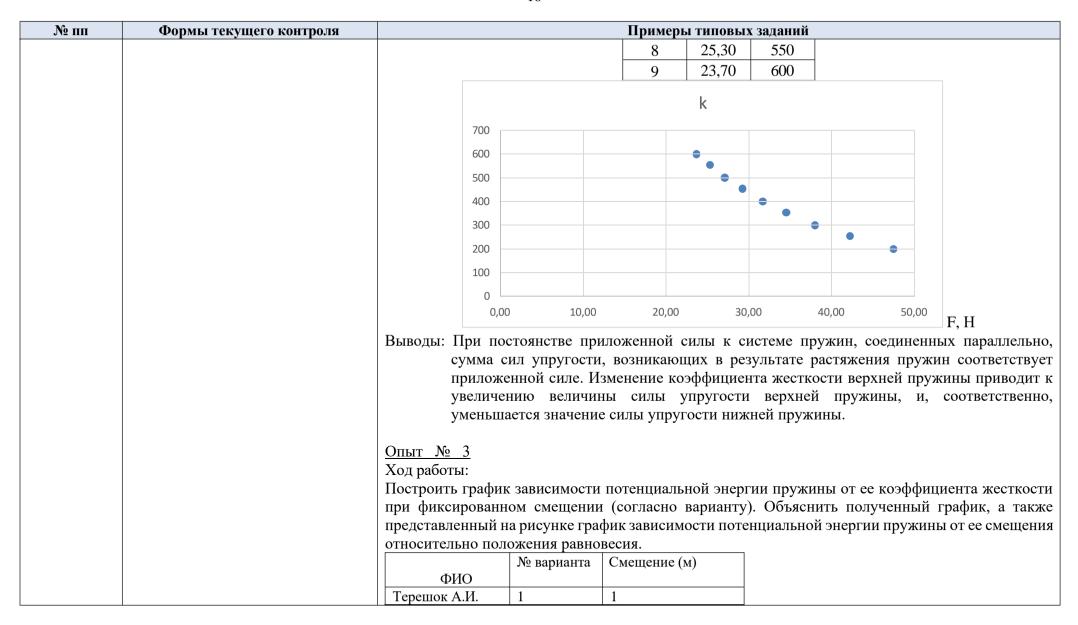
3.1. Соотнесение планируемых результатов обучения с уровнями сформированности компетенции(й).

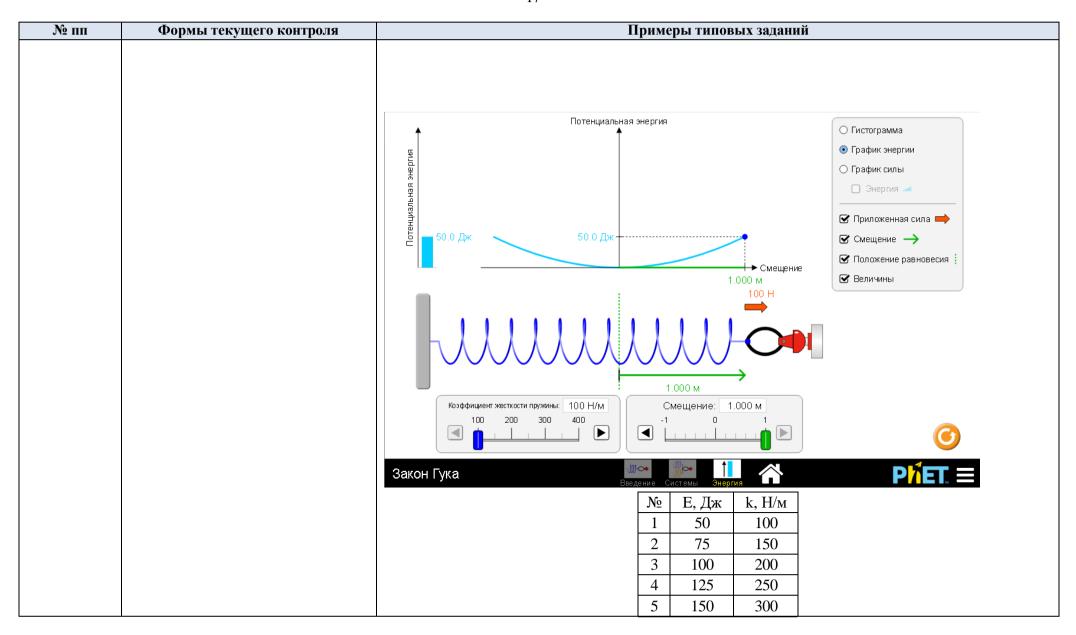

Уровни сформированности компетенции(-й)	Итоговое количество баллов	Оценка в пятибалльной системе	Показатели уровня сформированности универсальной и общепрофессиональной компетенций
	в 100-балльной системе по результатам текущей и промежуточной аттестации	по результатам текущей и промежуточной аттестации	УК-1: ИД-УК-1.2 ОПК-1: ИД-ОПК-1.3
высокий	85 – 100	ончилсто	Обучающийся: - исчерпывающе и логически стройно излагает учебный материал, умеет связывать теорию с практикой, справляется с решением задач профессиональной направленности высокого уровня сложности, правильно обосновывает принятые решения.
повышенный	65 – 84	хорошо	Обучающийся: - достаточно подробно, грамотно и по существу излагает изученный материал, приводит и раскрывает в тезисной форме основные понятия.
базовый	41 – 64	удовлетворительно	Обучающийся: - демонстрирует теоретические знания основного учебного материала дисциплины в объеме, необходимом для дальнейшего освоения ОПОП.
низкий	0 – 40	неудовлетворительно	Обучающийся: — демонстрирует фрагментарные знания теоретического и практического материал, допускает грубые ошибки при его изложении на занятиях и в ходе промежуточной аттестации.

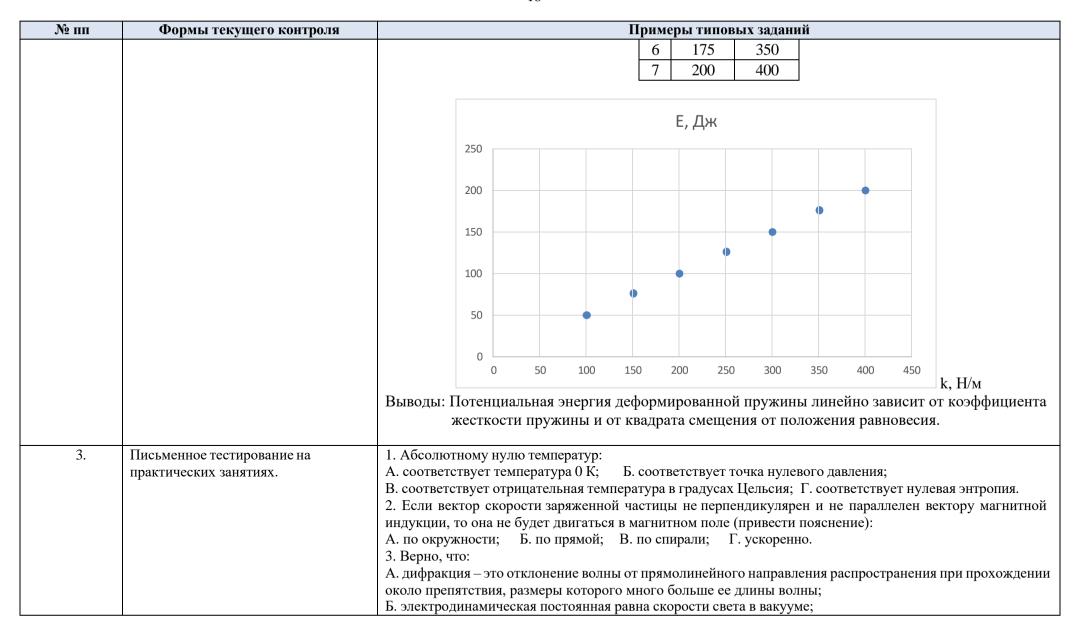
4. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ, ВКЛЮЧАЯ САМОСТОЯТЕЛЬНУЮ РАБОТУ ОБУЧАЮШИХСЯ

При проведении контроля самостоятельной работы обучающихся, текущего контроля и промежуточной аттестации по учебной дисциплине «Физика» проверяется уровень сформированности у обучающихся компетенции и запланированных результатов обучения по дисциплине, указанных в разделе 2 настоящей программы.


4.1. Формы текущего контроля успеваемости, примеры типовых заданий:

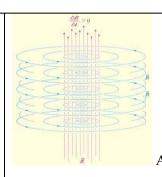

1. Устный опрос							
	с перед началом	Сформулировать цель и задачи лабораторной работы.					
лабораторной	работы.	Указать смысл основных формул, используемых в лабораторной работе.					
		Сформулировать ожидаемые результаты лабораторной работы.					
		Сформулировать основные правила и меры безопасности при выполнении работы.					
	отчет по лабораторной	После выполнения лабораторной работы обучающийся представляет отчет по выполненной работе в					
работе.		соответствии с методическими рекомендациями преподавателя.					
		Пример. Отчет по лабораторной работе «Закон Гука» (https://phet.colorado.edu/sims/html/hookes-					
		law/latest/hookes-law ru.html)					
		<u>Цель:</u> Изучение зависимостей характеристик пружин.					
		<u>Теоретическая часть</u>					
		Сила, возникающая в теле в результате его деформации и стремящаяся вернуть тело в исходное					
		положение, называется силой упругости. Сила упругости возникает только при деформации тел.					
		Если исчезает деформация тела, то исчезает и сила упругости. Деформации бывают разных видов:					
		растяжения, сжатия, сдвига, изгиба и кручения.					
		Записывается закон Гука следующим образом:					
		$Fynp=k\cdot x$,					
		где x — удлинение тела (изменение его длины),					
		k — коэффициент пропорциональности, который называется жёсткостью.					
		Жёсткость тела зависит от формы и размеров, а также от материала, из которого оно					
		изготовлено.					
		Закон Гука справедлив только для упругой деформации.					




№ пп	Формы текущего контроля			П	оимеры ті	иповых за	даний		
				5	0,26	25,85	99,0		
				6	0,30	30,59	101,3		
				7	0,34	35,07	102,2		
				8	0,38	38,63	100,6		
				9	0,43	43,85	103,2		
				10	0,47	48,22	103,5		
		100,	.00		F,	Н			
		80,	,00					•	
		40,		9. •					
		0,	0,00	0,20	0,40	0,60	0,80	1,00	Х, м
		смещению	относи нальности	ительно	поло	жения	равновес	ия $/F/$	ины пропорциональна = kx. Коэффициент ствует коэффициенту
				No	Х, м	k, H/M	r F, H		
				1	-0,950	100,0	-95,0		
				2	-0,475	200,0	-95,0		
				3	-0,317	300,0	-95,1		
				4	-0,238	400,0	-95,2		
				5	-0,190	500,0	-95,0		
				6	-0,158	600,0	-94,8		

№ пп	Формы текущего контроля				При	імеры тиг	ювых зада	аний		
	1				7	-0,136	700,0	-95,2		
					8	-0,119	800,0	-95,2		
					9	-0,106	900,0	-95,4		
					10	-0,095	1000,0	-95,0		
				_		•	•			
						k				
									1200,0	
									● 000,0	
									800,0	
									800,0	
									600,0	
									•	
								•	400,0	
									200,0	
			•							
			1.0			0.5	0.4		0,0	
			-1,0	-0,8		-0,6	-0,4	-0	0,0	Х, м
		FO HR	г смещения	относит	ельно п	оложения	равновес	сия, согл	пасно получен	циента упругости ной зависимости, ученной из закона
		<u>Опыт №2</u>								
		Ход работы	ı:							
										ей пружине, от
		коэффицие	нта жестко	сти верх	кнеи пр	ужины п	ри задан	ных зна	ачениях прил	оженной силы и

№ пп	Формы текущего контроля	Примеры типовых заданий
		В. в максимумах интерференционной картины интенсивность больше, а в минимумах меньше суммы
		интенсивностей интерферирующих пучков;
		Г. интерференция не наблюдается при сложении волн от двух независимых источников.
		4. Тело движется прямолинейно, а зависимость пройденного пути от времени задается уравнением $S = A -$
		$Bt + Ct^2$, где $C = 3 \text{ м/c}^2$. Ускорение тела равно (привести пояснение):
		А. равно 3 м/ c^2 . Б. равно 4 м/ c^2 . В. равно 6 м/ c^2 . Г. равно 2С.
		5. Величина фототока насыщения при внешнем фотоэффекте не зависит:
		А. от интенсивности падающего света; Б. от работы выхода облучаемого материала;
		В. от красной границы фотоэффекта; Г. от частоты падающего света.


4.2. Критерии, шкалы оценивания текущего контроля успеваемости:

Наименование оценочного средства		Шкалы оценивания	
(контрольно- оценочного	Критерии оценивания	100-балльная	Пятибалльная
мероприятия)		система	система
Устный опрос перед	Обучающийся полно излагает материал (отвечает на вопросы), дает правильное		Обучающийся
началом лабораторной	определение основных понятий; обнаруживает понимание материала, может		допускается к
работы	обосновать свои суждения, применить знания на практике, знает последовательность		выполнению
	проведения опытов и измерений, условия и режимы, обеспечивающие получение		лабораторной
	правильных результатов и выводов.		работы
	Обучающийся владеет знаниями только по основному материалу, но не знает		Обучающийся
	отдельных деталей и особенностей, допускает неточности и испытывает		допускается к
	затруднения с формулировкой определений, знает последовательность проведения		выполнению
	опытов и измерений, условия и режимы, обеспечивающие получение правильных		лабораторной
	результатов и выводов.		работы
	Обучающийся обладает фрагментарными знаниями материала, слабо владеет		Обучающийся
	понятийным аппаратом, нарушает последовательность в изложении материала,		допускается к
	допускает неточности в определении понятий или при формулировке правил, излагает		выполнению
	материал непоследовательно и допускает ошибки в изложении последовательности		лабораторной
	проведения опытов и измерений, условий и режимов, обеспечивающих получение		работы
	правильных результатов и выводов.		

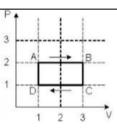
Наименование оценочного средства	Vavranuu augunauug	Шкалы оценивания		
(контрольно- оценочного мероприятия)	Критерии оценивания	100-балльная система	Пятибалльная система	
	Обучающийся обнаруживает незнание большей части материала лабораторной работы, допускает ошибки в формулировке определений, искажающие их смысл, беспорядочно и неуверенно излагает материал. Отмечаются недостатки в подготовке, которые являются серьезным препятствием к успешному выполнению лабораторной работы.		Обучающийся не допускается к выполнению лабораторной работы	
Письменный отчет по лабораторной работе	Работа выполнена полностью. Нет ошибок в логических рассуждениях. Возможно наличие одной неточности или описки, не являющейся следствием незнания или непонимания учебного материала. Обучающийся показал полный объем знаний, умений в освоении пройденной темы и применении ее на практике.	85% - 100%	5 (Зачтено)	
	Работа выполнена полностью, но обоснований шагов решения недостаточно. Допущена одна ошибка или два-три недочета.	65% - 84 %	4 (Зачтено)	
	Допущены более одной ошибки или более двух-трех недочетов.	41%-64%	3 (Зачтено)	
	Работа выполнена не полностью. Допущены грубые ошибки.	1% - 40%	2 (Не зачтено)	
	Работа не выполнена.	0%		
Письменное	За выполнение каждого тестового задания испытуемому выставляются баллы.	85% - 100%	5 (Зачтено)	
тестирование на	Минимальная оценка в баллах за одно задание -0 , максимальная -1 .	65% - 84 %	4 (Зачтено)	
практических занятиях	Максимальная оценка в баллах за выполнение всех 4-х заданий -4 (100 %).	41%-64%	3 (Зачтено)	
		Менее 40%	2 (Не зачтено)	

4.3. Промежуточная аттестация:

Форма промежуточной	Типовые контрольные задания и иные материалы		
аттестации	для проведения промежуточной аттестации:		
Зачет в письменной форме по	БИЛЕТ № 1		
билетам	1. Рисунок иллюстрирует:		

А. закон электромагнитной индукции; Б. процессы, описываемые уравнением

 $rot \mathbf{E} = -$


$$rot \vec{\mathbf{H}} = \frac{\partial \mathbf{D}}{\partial t}.$$

положение квантовой физики; Г. процессы, описываемые уравнением

- 2. Энтропия изолированной термодинамической системы:
- А. не может убывать; Б. может только увеличиваться; В. может быть только постоянной; Г. может только уменьшаться.
- 3. Когерентные волны с начальными фазами $\phi 1$ и $\phi 2$ и разностью хода Δ при наложении максимально ослабляются, если (k=0,1,2):
- A. $\Delta = (2k + 1) \lambda$; B. $\varphi 1 \varphi 2 = 2k\pi$; B. $\varphi 1 \varphi 2 = \pi/2$; Γ . $\varphi 1 \varphi 2 = (2k + 1)\pi$.
- 4. Плоская волна, возбуждаемая вибратором, колеблющимся по закону $E=0.3\sin(6.28t)$ (амплитуда дана в см, а циклическая частота в Мрад/с), распространяется со скоростью 106 м/с. Верно, что (привести пояснение):
- А. волна является затухающей; Б. модуль ее волнового вектора равен 6,28 1/м;
- В. период колебаний в волне равен 1 мкс; Г. частота колебаний в волне равна 0,5 Гц.

БИЛЕТ № 2

- 1. При пропускании меняющегося во времени электрического тока через катушку с сердечником у конца сердечника:
- А. не возникает переменное магнитное поле; Б. возникает вихревое электрическое поле;
- В. возникает только электрическое поле; Г. возникает только магнитное поле.
- 2. При прохождении через призму немонохроматического белого света на экране, установленном за призмой, наблюдается видимая радужная полоска, состоящая из семи цветов. Ближе всего к основанию призмы смещены:
- А. зеленые лучи; Б. красные лучи; В. фиолетовые лучи; Г. голубые лучи.
- 3. На диаграмме изображен циклический процесс. Температура:

- А. на BC и CD повышается; Б. на BC и CD понижается; В. на BC повышается, на CD понижается;
- Г. на BC понижается, на CD повышается.
- 4. Кинетическая энергия материальной точки массы m, совершающей свободные гармонические колебания с циклической частотой w и амплитудой A, с течением времени (привести пояснение):
- А. не изменяется; Б. является периодически изменяющейся величиной;
- В. изменяется по линейному закону; Г. изменяется.

4.4. Критерии, шкалы оценивания промежуточной аттестации учебной дисциплины:

Форма промежуточной аттестации	Критерии оценивания	Шкалы	оценивания
Зачет	За выполнение каждого тестового задания испытуемому выставляются	85% - 100%	5 (зачтено)
в письменной форме по билетам	баллы. Минимальная оценка в баллах за одно задание -0 ,	65% - 84 %	4 (зачтено)
	максимальная – 1. Максимальная оценка в баллах за выполнение всех	41%-64%	3 (зачтено)
	3аданий -4 (100 %).	Менее 40%	2 (не зачтено)

4.5. Система оценивания результатов текущего контроля и промежуточной аттестации.

Оценка по дисциплине выставляется обучающемуся с учётом результатов текущей и промежуточной аттестации.

Форма контроля	100-балльная система	Пятибалльная система
Текущий контроль:		
- письменный отчет по лабораторной работе	0 - 10 баллов (0 % - 100 %)	2-5
- письменное тестирование на практических занятиях	0 - 10 баллов (0 % - 100 %)	2 - 5
Промежуточная аттестация:		Отлично (зачтено)
Экзамен/зачет	(0 % - 100 %)	Хорошо (зачтено)
Итого за курс	0 - 100 баллов (0 % - 100 %)	Удовлетворительно (зачтено) Неудовлетворительно (зачтено)

Полученный совокупный результат конвертируется в пятибалльную систему оценок в соответствии с таблицей:

100-балльная система	пятибалльная система		
	Экзамен	Зачет	
85 – 100 баллов	отлично	зачтено	
65 – 84 баллов	хорошо	зачтено	
41 – 64 баллов	удовлетворительно	зачтено	
0 - 40 баллов	неудовлетворительно	не зачтено	

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Реализация программы предусматривает использование в процессе обучения следующих образовательных технологий:

- проблемная лекция;
- групповые и индивидуальные дискуссии;
- преподавание дисциплины на основе результатов научных исследований;
- поиск и обработка информации с использованием сети Интернет;
- дистанционные образовательные технологии;
- применение электронного обучения;
- компьютерные симуляции.
- использование на лекционных занятиях видеоматериалов и наглядных пособий.

6. ПРАКТИЧЕСКАЯ ПОДГОТОВКА

Практическая подготовка в рамках учебной дисциплины реализуется при проведении практических занятий и лабораторных работ, предусматривающих участие обучающихся в выполнении отдельных элементов работ, связанных с будущей профессиональной деятельностью.

Проводятся отдельные занятия лекционного типа, которые предусматривают передачу учебной информации обучающимся, которая необходима для последующего выполнения практической работы.

7. ОРГАНИЗАЦИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ДЛЯ ЛИЦ С ОГРАНИЧЕННЫМИ ВОЗМОЖНОСТЯМИ ЗДОРОВЬЯ

При обучении лиц с ограниченными возможностями здоровья и инвалидов используются подходы, способствующие созданию безбарьерной образовательной среды: технологии дифференциации и индивидуального обучения, применение соответствующих методик по работе с инвалидами, использование средств дистанционного общения, проведение дополнительных индивидуальных консультаций по изучаемым теоретическим вопросам и практическим занятиям, оказание помощи при подготовке к промежуточной аттестации.

При необходимости рабочая программа дисциплины может быть адаптирована для обеспечения образовательного процесса лицам с ограниченными возможностями здоровья, в том числе для дистанционного обучения.

Учебные и контрольно-измерительные материалы представляются в формах, доступных для изучения студентами с особыми образовательными потребностями с учетом нозологических групп инвалидов.

Для подготовки к ответу на лабораторном занятии студентам с ограниченными возможностями здоровья среднее время увеличивается по сравнению со средним временем подготовки обычного студента.

Для студентов с инвалидностью или с ограниченными возможностями здоровья форма проведения текущей и промежуточной аттестации устанавливается с учетом индивидуальных психофизических особенностей (устно, письменно на бумаге, письменно на компьютере, в форме тестирования и т.п.).

Промежуточная аттестация по дисциплине может проводиться в несколько этапов в форме рубежного контроля по завершению изучения отдельных тем дисциплины. При необходимости студенту предоставляется дополнительное время для подготовки ответа во время промежуточной аттестации.

Для осуществления процедур текущего контроля успеваемости и промежуточной аттестации обучающихся создаются, при необходимости, фонды оценочных средств, адаптированные для лиц с ограниченными возможностями здоровья и позволяющие оценить достижение ими запланированных в основной образовательной программе результатов обучения и уровень сформированности всех компетенций, заявленных в образовательной программе.

8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Характеристика материально-технического обеспечения дисциплины (модуля) составляется в соответствии с требованиями ФГОС ВО.

Материально-техническое обеспечение дисциплины при обучении с использованием традиционных технологий обучения.

Наименование учебных аудиторий, лабораторий, мастерских, библиотек, спортзалов, помещений для хранения и профилактического обслуживания учебного оборудования и т.п.	Оснащенность учебных аудиторий, лабораторий, мастерских, библиотек, спортивных залов, помещений для хранения и профилактического обслуживания учебного оборудования и т.п.			
119071, г. Москва, Малая Калужская ул.,	119071, г. Москва, Малая Калужская ул., дом 1			
Аудитория для проведения занятий лекционного	Комплект учебной мебели,			
типа и промежуточной аттестации № 1617	технические средства обучения, служащие для			
	представления учебной информации большой			
	аудитории:			
	– ноутбук;			

Наименование учебных аудиторий, лабораторий, мастерских, библиотек, спортзалов, помещений для хранения и профилактического обслуживания учебного оборудования и т.п.	Оснащенность учебных аудиторий, лабораторий, мастерских, библиотек, спортивных залов, помещений для хранения и профилактического обслуживания учебного оборудования и т.п.
	– проектор.
Учебная лаборатория 1617 «Механика и молекулярная физика»	Лабораторная установка по определению скорости полета пули с помощью крутильных колебаний баллистического маятника.
	Состав: баллистический крутильный маятник РМ-09, фотоэлектрический датчик, универсальный секундомер РМ-14, стреляющее устройство, пулька,
	измерительная линейка.
	Лабораторная установка по изучению законов
	вращения на маятнике Обербека (без учета силы
	трения).
	Состав: маятник Обербека, штангенциркуль, набор
	грузов, измерительная линейка, секундомер. Лабораторная установка по определению момента
	инерции твёрдых тел с помощью
	крутильных колебаний. Сосав: крутильный маятник с
	электронным блоком регистрации, параллелепипед, 2
	диска, штангенциркуль.
	Лабораторная установка по проверке закона
	сохранения механической энергии с помощью маятника Максвелла.
	Состав: универсальная установка для изучения движения маятника Максвелла, набор металлических
	накладных колец.
	Лабораторная установка по изучению элементарной
	теории гироскопа и определению угловой скорости
	прецессии оси гироскопа. Состав: гироскопическая установка FPM-10; набор грузов.
	Лабораторная установка по определению вязкости
	жидкости методом Стокса. Состав: стеклянный
	цилиндр, наполненный глицерином, шарики,
	секундомер, микрометр.
	Лабораторная установка по определению вязкости воздуха методом истечения из капилляра.
	воздуха методом истечения из капилляра. Состав: установка для определения вязкости воздуха,
	секундомер, барометр, термометр.
	Лабораторная установка по максвелловскому
	распределению термоэлектронов по скоростям.
	Состав: источник постоянного тока типа ВУП-2 и
	СИП-1, электронная лампа 6П9, миллиамперметр,
	вольтметр.
	Лабораторная установка по определению отношения
	удельной теплоемкости при постоянном давлении к
	удельной теплоемкости при постоянном объеме
	методом Клемана-Дезорма.
	Состав: стеклянный баллон с манометром, насос, секундомер.

Наименование учебных аудиторий, лабораторий, мастерских, библиотек, спортзалов, помещений для хранения и профилактического обслуживания учебного оборудования и т.п.	Оснащенность учебных аудиторий, лабораторий, мастерских, библиотек, спортивных залов, помещений для хранения и профилактического обслуживания учебного оборудования и т.п.
	Лабораторная установка по определению коэффициента поверхностного натяжения жидкости по методу отрыва кольца. Состав: измерительный прибор, набор разновесов, сосуд с исследуемой жидкостью, штангенциркуль. Лабораторная установка по определению коэффициента поверхностного натяжения жидкости методом поднятия жидкости в капиллярах. Состав: измерительный микроскоп, сосуд с водой, два
Учебная лаборатория 1603 «Электричество и магнетизм»	капилляра, штатив с держателем. Подключение к сети Интернет. Лабораторная установка по снятию вольтамперной характеристики диода и триода и определению работы
	выхода электрона. Состав: выпрямители ВС-24М, ВСА-4К, диод 5Ц 3С, панель для изучения работы триода в статическом и динамическом режимах; источник анодного питания с напряжением до 250В; источник сеточного напряжения до 10В; вакуумный триод. Лабораторная установка по изучению электронного осциллографа. Состав: электронный осциллограф, звуковой генератор (ЗГ), вольтметр (на панели ЗГ), понижающий трансформатор. Лабораторная установка по определению горизонтальной составляющей индукции магнитного поля Земли. Состав: тангенс-гальванометр, амперметр, источник постоянного тока, переключатель, реостат. Лабораторная установка по изучению магнитного поля кругового тока. Состав: выпрямитель, реостат, баллистический гальванометр, панель для изучения магнитного поля
	кругового тока. Лабораторная установка по определению индуктивности катушки. Состав: источник переменного тока частотой 50 Гц; катушка с подвижным сердечником, амперметр, вольтметр, реостат, провода. Лабораторная установка по изучению закона Ома в цепях переменного тока. Состав: катушка индуктивности (школьная трехсекционная), батарея конденсаторов, амперметр, вольтметр, ключ, источник переменного тока с регулируемым напряжением. Лабораторная установка по исследованию затухающих электромагнитных колебаний в замкнутом колебательном контуре.

Наименование учебных аудиторий, лабораторий, мастерских, библиотек, спортзалов, помещений для хранения и профилактического обслуживания учебного оборудования и т.п.	Оснащенность учебных аудиторий, лабораторий, мастерских, библиотек, спортивных залов, помещений для хранения и профилактического обслуживания учебного оборудования и т.п.
	Состав: рабочая панель с замкнутым колебательным
	контуром, электронный осциллограф С1-94, источник
	импульсного напряжения.
	Лабораторная установка по Изучению магнитного
	поля соленоида.
	Состав: источник питания, кассета ФПЭ-04 с
	соленоидом, датчик Холла, цифровой вольтметр.
	Дозиметр QUARTEX Model RD 8901.
Учебная лаборатория 1606 «Оптика»	Лабораторная установка по изучению закона Бугера – Ламберта – Бера.
	Состав: колориметр фотоэлектрический
	концентрационный КФК-2, кюветы, растворы
	красителей, цветные стекла.
	Лабораторная установка по определению длины
	световой волны с помощью бипризмы Френеля.
	Состав: монохроматор, бипризма Френеля, окулярный
	микрометр, линза.
	Лабораторная установка по определению
	концентрации растворенного вещества с помощью
	интерферометра ИТР - 1.
	Состав: монохроматор, бипризма Френеля, окулярный
	микрометр, линза. Лабораторная установка по определению показателя
	преломления вещества призмы при помощи
	гониомера.
	Состав: гониометр Г-5, призма, источник света.
	Лабораторная установка по определению показателя
	преломления вещества жидкости при помощи
	рефрактометра ИРФ-24.
	Состав: рефрактометр ИРФ-24, ртутная лампа.
	Лабораторная установка по изучению законов
	освещенности.
	Состав: оптическая скамья, два "точечных" источника
	света, люксметр, фотометр.
	Лабораторная установка по изучению явления
	поляризации света и определению концентрации
	сахара в водном растворе с помощью сахариметра.
	Состав: источник монохроматического света, призма
	Николя – поляризатор, анализатор, трубка с исследуемым раствором.
	Лабораторная установка по проверке закона Малюса,
	определению показателя преломления вещества с
	использованием закона Брюстера. Состав: лазер типа
	ЛГ-52-3, анализатор, держатель образца с экраном, два
	образца исследования.
	Лабораторная установка по изучению законов
	внешнего фотоэффекта и определению работы выхода
	электронов из материала фотокатода. Состав: гелий-

Наименование учебных аудиторий, лабораторий, мастерских, библиотек, спортзалов, помещений для хранения и профилактического обслуживания учебного оборудования и т.п.	Оснащенность учебных аудиторий, лабораторий, мастерских, библиотек, спортивных залов, помещений для хранения и профилактического обслуживания учебного оборудования и т.п.
	неоновый лазер, поляризатор-анализатор,
	фотоэлемент, блок питания фотоэлемента.
	Лабораторная установка по изучению законов
	фотометрии.
	Состав: оптическая скамья, два "точечных" источника
	света, люксметр, фотометр.
	Лабораторная установка по определению линейных
	размеров микрообъектов с помощью
	микроскопа.
	Состав: микроскоп, окулярный микрометр, объект-
	микрометр.
	Лабораторная установка по изучению линейчатых
	спектров. Состав: монохроматор УМ-2, ртутная лампа,
	водородная газоразрядная трубка.
	Лабораторная установка по определению показателя
	преломления вещества с помощью микроскопа.
	Состав: микроскоп, стеклянная пластинка с
	нанесенными на нее штрихами, источник света,
	микрометр.
	Лабораторная установка по определению длины
	световой волны с помощью дифракционной решетки.
	Состав: гониометр Г-5, дифракционная решетка,
	источник света.
	Лабораторная установка по изучению законов
	внешнего фотоэффекта.
	Состав: фотоэлемент типа СВН-4, источник
	постоянного напряжения, вольтметр, микроамперметр,
	ключ.
	Лабораторная установка по изучению интерференции
	света (классический опыт Юнга). Состав: лазер типа
	ЛГ-52-3, элемент Юнга, экран, миллиметровая бумага.
	Лабораторная установка по изучению явления
	дифракции лазерного излучения.
	Состав: лазер типа ЛГ-53-2, дифракционная решетка,
	экран, линейка. Лабораторная установка по определению показателя
	преломления вещества методом интерференции
	преломления вещества методом интерференции лазерного излучения.
	пазерного излучения. Состав: гелий-неоновый лазер, рассеивающая линза,
	плоскопараллельная пластинка, измерительный экран
	и измерительная пинейка.
Помещения для самостоятельной работы	Оснащенность помещений для самостоятельной
помещения для самостоятельной расоты обучающихся	работы обучающихся
Читальный зал библиотеки:	Компьютерная техника;
III wibibin swi onoshotekh.	компьютернал телпика,

Материально-техническое обеспечение учебной дисциплины при обучении с использованием электронного обучения и дистанционных образовательных технологий.

Необходимое оборудование	Параметры	Технические требования
Персональный компьютер/	Веб-браузер	Версия программного обеспечения не
ноутбук/планшет,		ниже: Chrome 72, Opera 59, Firefox 66, Edge
камера,		79, Яндекс.Браузер 19.3
микрофон,	Операционная система	Версия программного обеспечения не
динамики,		ниже: Windows 7, macOS 10.12 «Sierra»,
доступ в сеть Интернет		Linux
	Веб-камера	640х480, 15 кадров/с
	Микрофон	любой
	Динамики (колонки или	любые
	наушники)	
	Сеть (интернет)	Постоянная скорость не менее 192 кБит/с

Технологическое обеспечение реализации программы осуществляется с использованием элементов электронной информационно-образовательной среды университета.

9. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ/УЧЕБНОГО МОДУЛЯ

№ п/п	Автор(ы)	Наименование издания	Вид издания (учебник, УП, МП и др.)	Издательство	Год издания	Адрес сайта ЭБС или электронного ресурса (заполняется для изданий в электронном виде)	Количество экземпляров в библиотеке Университета
10.1 C	0.1 Основная литература, в том числе электронные издания						
	Савельев И.В.	Курс общей физики. В 3-х т. Т.1: Механика. Молекулярная физика.	Учебник	М.: Наука	2006 2007 2008 1986-87		91 4 2 938
1.	Савельев И.В.	Курс общей физики. В 3-х т. Т.2: Электричество. Колебания и волны. Волновая оптика.	Учебник	М.: Наука	2006 2007 2008 1988		1 100 2 487
2.	Савельев И.В.	Савельев И.В. Курс общей физики. В 3-х т. Т.3: Квантовая оптика. Атомная физика. Физика твердого тела. Физика атомного ядра и элементарных частиц.	Учебник	М.: Наука	1987		408
3.	Гвоздкова И.А.	Физика. Компьютерный лабораторный практикум	Учебное пособие	М.: ФГБОУ ВО «РГУ им. А.Н. Косыгина»	2022		5
4.	Кирьянов А.П., Шапкарин И.П.	Физика	Учебное пособие	М.: ИЛЕКСА	2012		220
5.	Савельев И.В.	Сборник вопросов и задач по общей физике	Учебник	С-Пб.: Лань	2007		1
6.	Кирьянов А.П., Кубарев С.И., Разинова С.М., Шапкарин И.П.	Общая физика. Сборник задач.	Учебное пособие	М.: КНОРУС М.: КНОРУС М.: КНОРУС	2008 2012 2015		424 19 5

7.	Савельев И.В.	«Курс общей физики» т.1-4	Учебник	М.: КНОРУС	2012		50
10.2	Цополнительная лите	ература, в том числе электронные	издания				
1.	Савельев И.В.	Савельев И.В. Курс общей	Учебное	M.: ACTM	2004		2
		физики. В 5-ти кн. Кн.1:	пособие	M.: ACTM	2005		2
		Механика.		M.: ACTM	2006		6
				СПб: Лань	2011		3
2.	Савельев И.В.	Савельев И.В. Курс общей	Учебное	M.: ACTM	2005		2
		физики. В 5-ти кн. Кн.2:	пособие	M.: ACTM	2006		5
		Электричество и магнетизм.		СПб: Лань	2011		1
3.	Савельев И.В.	Савельев И.В. Курс общей	Учебное	М.: Астрель	2007		4
		физики. В 5-ти кн. Кн.3:	пособие	СПб: Лань	2011		1
		Молекулярная физика и					
		термодинамика.					
4.	Савельев И.В.	Савельев И.В. Курс общей	Учебное	M.: ACT	2008		1
		физики. В 5-ти кн. Кн.4:	пособие	СПб.: Лань	2011		1
	C HD	Волны. Оптика.	V C	N. A.	2004		1
5.	Савельев И.В.	Савельев И.В. Курс общей физики. В 5-ти кн. Кн.5:	Учебное пособие	М.: Астрель	2004		1
		физики. В 5-ти кн. кн. з. Квантовая физика. Атомная	Пособие	M.: ACT	2007		8
		физика. Физика твердого		СПб: Лань	2011		1
		тела. Физика атомного ядра					
		и элементарных частиц.					
6.	Яворский В.М., Детлаф А.А.,	«Курс физики»	Учебник	М.: Высшая школа	2002		50
10.3 1		иалы (указания, рекомендации по	о освоению дисциі	ллины (модуля) авторов l	РГУ им. А. Н.	Косыгина)	
1.	Лобов В.И.,	Методические указания к	Методические	М.: МГУДТ	2014	http://znanium.com/catalog/prod	5
	Роде С.В.,	лабораторным работам по	указания			uct/795750;	
	Шапкарин И.П.	разделу "Оптика".				Локальная сеть университета	
	1	Часть 1. Законы				<i>y</i>	
		освещенности и					
		геометрическая оптика					

2.	Лобов В.И.,	Методические указания к	Методические	М.: МГУДТ	2014	http://znanium.com/catalog/prod	5
	Роде С.В.,	лабораторным работам по	указания			uct/795759;	
	Шапкарин И.П.	разделу "Оптика".				Локальная сеть университета	
	1	Часть 2. Явления				J 1	
		интерференции и дифракции					
		света					
3.	Лобов В.И.,	Методические указания к	Методические	М.: МГУДТ	2014	http://znanium.com/catalog/prod	5
	Роде С.В.,	лабораторным работам по	указания			uct/795758;	
	Шапкарин И.П.	разделу "Оптика".				Локальная сеть университета	
		Часть 3. Явления дисперсии				creating corp yand opening a	
		и поляризации света					
4.	Лобов В.И.,	Методические указания к	Методические	М.: МГУДТ	2014	http://znanium.com/catalog/prod	5
	Роде С.В.,	лабораторным работам по	указания			uct/795755;	
	Шапкарин И.П.	разделу "Оптика".				Локальная сеть университета	
		Часть 4. Основы квантовой					
		оптики и спектроскопии					

ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОГО ПРОЦЕССА 10.

11.1 Ресурсы электронной библиотеки, информационно-справочные системы и профессиональные базы данных:

Информация об используемых ресурсах составляется в соответствии с Приложением 3 к ОПОП ВО.

№ пп	Электронные учебные издания, электронные образовательные ресурсы			
1.	ЭБС «Лань» http://www.e.lanbook.com/			
2.	«Znanium.com» научно-издательского центра «Инфра-М» http://znanium.com/			
3.	Электронные издания «РГУ им. А.Н. Косыгина» на платформе ЭБС «Znanium.com»			
	http://znanium.com/			
	Профессиональные базы данных, информационные справочные системы			
1.	Научная электронная библиотека Elibrary.ru			
	https://www.elibrary.ru			
2.	PhET (Physics Education Technology) - моделирование физических явлений			
	https://phet.colorado.edu/			
3.	Wolfram Alpha — база знаний и набор вычислительных алгоритмов			
	https://www.wolframalpha.com/			
4.	Библиотека интерактивных материалов 1С:Урок – моделирование физических явлений			
	https://urok.1c.ru/library/			

Перечень используемого программного обеспечения с реквизитами подтверждающих

документов составляется в соответствии с Приложением № 2 к ОПОП ВО.

№п/п	Программное обеспечение	Реквизиты подтверждающего документа/ Свободно распространяемое
1.	Windows 10 Pro, MS Office 2019	контракт № 18-ЭА-44-19 от 20.05.2019
2.	CorelDRAW Graphics Suite 2018	контракт № 18-ЭА-44-19 от 20.05.2019
3.	Adobe Creative Cloud 2018 all Apps (Photoshop, Lightroom, Illustrator, InDesign, XD, Premiere Pro, Acrobat Pro, Lightroom Classic, Bridge, Spark, Media Encoder, InCopy, Story Plus, Muse и др.)	контракт № 18-ЭА-44-19 от 20.05.2019

ОБНОВЛЕНИЙ РАБОЧЕЙ ПРОГРАММЫ лист учета УЧЕБНОЙ дисциплины/модуля

В рабочую программу учебной дисциплины внесены изменения/обновления и утверждены на заседании кафедры:

№ пп	год обновления РПД	характер изменений/обновлений с указанием раздела	номер протокола и дата заседания кафедры